On sets of metric regularity of mappings in spaces with vector-valued metric
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 547-554 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Spaces with vector-valued metric are considered. The values of a vectorvalued metric are elements of a cone in some linear normed space. The concept of the set of metric regularity for mapping in spaces with vector-valued metric is formulated. A statement on the stability of the set of metric regularity of a given mapping for its Lipschitz perturbations in spaces with vector-valued metric is obtained.
Keywords: nonlinear mapping, space with vector-valued metric, the set of metric Regularity.
@article{VTAMU_2018_23_123_a25,
     author = {E. A. Pluzhnikova and T. V. Zhukovskaya and Yu. A. Moiseev},
     title = {On sets of metric regularity of mappings in spaces with vector-valued metric},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {547--554},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a25/}
}
TY  - JOUR
AU  - E. A. Pluzhnikova
AU  - T. V. Zhukovskaya
AU  - Yu. A. Moiseev
TI  - On sets of metric regularity of mappings in spaces with vector-valued metric
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 547
EP  - 554
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a25/
LA  - ru
ID  - VTAMU_2018_23_123_a25
ER  - 
%0 Journal Article
%A E. A. Pluzhnikova
%A T. V. Zhukovskaya
%A Yu. A. Moiseev
%T On sets of metric regularity of mappings in spaces with vector-valued metric
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 547-554
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a25/
%G ru
%F VTAMU_2018_23_123_a25
E. A. Pluzhnikova; T. V. Zhukovskaya; Yu. A. Moiseev. On sets of metric regularity of mappings in spaces with vector-valued metric. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 547-554. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a25/

[1] E. S. Zhukovskiy, “On coincidence points for vector mappings”, Russian Mathematics, 2016, no. 10, 14–28 (In Russian)

[2] E. A. Pluzhnikova, “Covering mappings in the spaces with vector-valued metrics”, Tambov University Reports. Series: Natural and Technical Sciences, 21:1 (2016), 88–95 (In Russian) | DOI

[3] A. V. Arutyunov, S. E. Zhukovskiy, “The coincidence points of mappings in spaces with a vectorvalued metric and their applications to differential equations and control systems”, Differential Equations, 53:11 (2017), 1473–1481 (In Russian)

[4] E. S. Zhukovskiy, “On Coincidence Points of Multivalued Vector Mappings of Metric Spaces”, Mathematical Notes, 100:3 (2016), 344–362 (In Russian) | MR

[5] E. S. Zhukovskiy, E. A. Pluzhnikova, “Multi-valued covering mappings in spaces with vector-valued metrics in research of functional inclusions”, Tambov University Reports. Series: Natural and Technical Sciences, 21:6 (2016), 1974–1982 (In Russian) | DOI

[6] E. A. Pluzhnikova, Y. A. Moiseev, A. A. Repin, “On coincidence points of two multivalued mappings in spaces with vector-valued metrics”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6-1 (2017), 1309–1313 (In Russian) | DOI

[7] E. S. Zhukovskiy, E. A. Panasenko, “On fixed points of multivalued mappings in spaces with a vector-valued metric”, Proceedings of the Steklov Institute of Mathematics, 24:1 (2018), 93–105 (In Russian)

[8] S. Crane (ed.), Functional Analysis, Moscow, 1972, 544 pp. (In Russian)