On obtaining effective conditions for the solvability of a system of functional-differential equations determinated on a geometric graph
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 531-538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to consideration of a boundary value problem for a system of functional differential equations determined on a geometric graph. The boundary conditions of the problem are determined by the conditions for the connection of the edges of the graph. There is an algorithm that reduces the system of equations on the graph to the system determined on the set $\Theta$ of disjoint segments of the real axis. The Azbelev's $W$-method is applied to the system determined on the set $\Theta,$ what makes it possible to obtain effective conditions for the unique solvability of the original system. An example is given.
Keywords: functional-differential equation, differential equation on a geometric graph.
@article{VTAMU_2018_23_123_a23,
     author = {V. P. Plaksina},
     title = {On obtaining effective conditions for the solvability of a system of functional-differential equations determinated on a geometric graph},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {531--538},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a23/}
}
TY  - JOUR
AU  - V. P. Plaksina
TI  - On obtaining effective conditions for the solvability of a system of functional-differential equations determinated on a geometric graph
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 531
EP  - 538
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a23/
LA  - ru
ID  - VTAMU_2018_23_123_a23
ER  - 
%0 Journal Article
%A V. P. Plaksina
%T On obtaining effective conditions for the solvability of a system of functional-differential equations determinated on a geometric graph
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 531-538
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a23/
%G ru
%F VTAMU_2018_23_123_a23
V. P. Plaksina. On obtaining effective conditions for the solvability of a system of functional-differential equations determinated on a geometric graph. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 531-538. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a23/

[1] Yu. V. Pokornyy, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differential Equations at Geometrical Graphs, Fizmatlit Publ., Moscow, 2005, 272 pp. (In Russian) | MR

[2] Yu. V. Pokornyy, Zh. I. Bakhtina, M. B. Zvereva, S. A. Shabrov, Schturm Oscillatory Method at Special Problems, Fizmatlit Publ., Moscow, 2009, 192 pp. (In Russian)

[3] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the Theory of Functional Differential Inclusions, Nauka Publ., Moscow, 1991, 280 pp. (In Russian) | MR

[4] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Elements of Modern Theory of Functional Differential Equations. Methods and Applications, Institute of Computer Science Publ., Moscow, 2002, 384 pp. (In Russian) | MR

[5] V. P. Plaksina, E. N. Provotorova, “Ob odnom klasse kraevykh zadach dlya impulsnykh sistem”, Differentsialnye uravneniya, 24:8 (1988), 881–885 (In Russian) | MR

[6] V. P. Plaksina, I. M. Plaksina, E. V. Plekhova, “Solvability conditions of the Cauchy problem for a second order quasilinear singular functional-differential equation”, Tambov University Reports. Series: Natural and Technical Sciences, 20:5 (2015), 1364–1369 (In Russian)

[7] I. M. Plaksina, “On applicability of $W$-method to second order singular functional differential equation”, Control Theory and Mathematical Modelling, All-Russian Conference with International Participation in Honor of Memory of Professor N. V. Azbelev and Professor E. L. Tonkov “Control Theory and Mathematical Modelling” (Izhevsk, 2015), Proceedings of the All-Russian Conference, Izhevsk, 2015, 2015, 115–117 (In Russian)

[8] I. M. Plaksina, “On one model singular problem”, Bulletin of Perm University. Mathematics. Mechanics. Computer Science, 2010, no. 1, 19–23 (In Russian)