@article{VTAMU_2018_23_123_a23,
author = {V. P. Plaksina},
title = {On obtaining effective conditions for the solvability of a system of functional-differential equations determinated on a geometric graph},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {531--538},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a23/}
}
TY - JOUR AU - V. P. Plaksina TI - On obtaining effective conditions for the solvability of a system of functional-differential equations determinated on a geometric graph JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 531 EP - 538 VL - 23 IS - 123 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a23/ LA - ru ID - VTAMU_2018_23_123_a23 ER -
%0 Journal Article %A V. P. Plaksina %T On obtaining effective conditions for the solvability of a system of functional-differential equations determinated on a geometric graph %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 531-538 %V 23 %N 123 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a23/ %G ru %F VTAMU_2018_23_123_a23
V. P. Plaksina. On obtaining effective conditions for the solvability of a system of functional-differential equations determinated on a geometric graph. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 531-538. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a23/
[1] Yu. V. Pokornyy, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differential Equations at Geometrical Graphs, Fizmatlit Publ., Moscow, 2005, 272 pp. (In Russian) | MR
[2] Yu. V. Pokornyy, Zh. I. Bakhtina, M. B. Zvereva, S. A. Shabrov, Schturm Oscillatory Method at Special Problems, Fizmatlit Publ., Moscow, 2009, 192 pp. (In Russian)
[3] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the Theory of Functional Differential Inclusions, Nauka Publ., Moscow, 1991, 280 pp. (In Russian) | MR
[4] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Elements of Modern Theory of Functional Differential Equations. Methods and Applications, Institute of Computer Science Publ., Moscow, 2002, 384 pp. (In Russian) | MR
[5] V. P. Plaksina, E. N. Provotorova, “Ob odnom klasse kraevykh zadach dlya impulsnykh sistem”, Differentsialnye uravneniya, 24:8 (1988), 881–885 (In Russian) | MR
[6] V. P. Plaksina, I. M. Plaksina, E. V. Plekhova, “Solvability conditions of the Cauchy problem for a second order quasilinear singular functional-differential equation”, Tambov University Reports. Series: Natural and Technical Sciences, 20:5 (2015), 1364–1369 (In Russian)
[7] I. M. Plaksina, “On applicability of $W$-method to second order singular functional differential equation”, Control Theory and Mathematical Modelling, All-Russian Conference with International Participation in Honor of Memory of Professor N. V. Azbelev and Professor E. L. Tonkov “Control Theory and Mathematical Modelling” (Izhevsk, 2015), Proceedings of the All-Russian Conference, Izhevsk, 2015, 2015, 115–117 (In Russian)
[8] I. M. Plaksina, “On one model singular problem”, Bulletin of Perm University. Mathematics. Mechanics. Computer Science, 2010, no. 1, 19–23 (In Russian)