On the formal representation of solutions of differential equations of fractional order
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 524-530 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents a formal representation of solutions of non-scalar semilinear differential equations in Banach spaces by means of the Mittag-Leffler function.
Keywords: differential equation, Mittag-Leffler function, gamma function, Banach Space.
@article{VTAMU_2018_23_123_a22,
     author = {G. Petrosyan},
     title = {On the formal representation of solutions of differential equations of fractional order},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {524--530},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a22/}
}
TY  - JOUR
AU  - G. Petrosyan
TI  - On the formal representation of solutions of differential equations of fractional order
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 524
EP  - 530
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a22/
LA  - ru
ID  - VTAMU_2018_23_123_a22
ER  - 
%0 Journal Article
%A G. Petrosyan
%T On the formal representation of solutions of differential equations of fractional order
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 524-530
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a22/
%G ru
%F VTAMU_2018_23_123_a22
G. Petrosyan. On the formal representation of solutions of differential equations of fractional order. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 524-530. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a22/

[1] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J.-C. Yao, “On semilinear fractional order differential inclusions in Banach spaces”, Fixed Point Theory, 18:1 (2017), 269–292 | DOI | MR

[2] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J.-C. Yao, “Boundary value problems for semilinear differential inclusions of fractional order in a Banach space”, Applicable Analysis, 96 (2017), 1–21 | DOI | MR

[3] V. V. Obukhovskiy, G. G. Petrosyan, “On the Cauchy problem for functional differential inclusions of fractional order with impulsive characteristics in a Banach space”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2013, no. 1, 192–209 (In Russian)

[4] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskiy, Introduction to the Theory of Many-Valued Separations and Differential Inclusions, Book House “Librokom” Publ., Moscow, 2011 (In Russian) | MR

[5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006 | MR

[6] G. G. Petrosyan, M. S. Afanasova, “On the Cauchy problem for a differential inclusion of fractional order with nonlinear boundary conditions”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2017, no. 1, 135–151 (In Russian)

[7] G. G. Petrosyan, “On a nonlocal Cauchy problem for functional differential equations with fractional derivative in the Banach space”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2012, no. 2, 207–212 (In Russian)

[8] G. G. Petrosyan, “On the structure of the solutions set of the Cauchy problem for a differential inclusions of fractional order in a Banach space”, Some Questions of Analysis, Algebra, Geometry and Mathematical Education, Voronezh State University, Voronezh, 2016, 7–8

[9] F. Mainardi, P. Paradisi, R. Gorenflo, Probability Distributions Generated by Fractional Diffusion Equations, Cornell University, New York, 2007, 46 pp.