@article{VTAMU_2018_23_123_a22,
author = {G. Petrosyan},
title = {On the formal representation of solutions of differential equations of fractional order},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {524--530},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a22/}
}
TY - JOUR AU - G. Petrosyan TI - On the formal representation of solutions of differential equations of fractional order JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 524 EP - 530 VL - 23 IS - 123 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a22/ LA - ru ID - VTAMU_2018_23_123_a22 ER -
G. Petrosyan. On the formal representation of solutions of differential equations of fractional order. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 524-530. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a22/
[1] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J.-C. Yao, “On semilinear fractional order differential inclusions in Banach spaces”, Fixed Point Theory, 18:1 (2017), 269–292 | DOI | MR
[2] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J.-C. Yao, “Boundary value problems for semilinear differential inclusions of fractional order in a Banach space”, Applicable Analysis, 96 (2017), 1–21 | DOI | MR
[3] V. V. Obukhovskiy, G. G. Petrosyan, “On the Cauchy problem for functional differential inclusions of fractional order with impulsive characteristics in a Banach space”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2013, no. 1, 192–209 (In Russian)
[4] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskiy, Introduction to the Theory of Many-Valued Separations and Differential Inclusions, Book House “Librokom” Publ., Moscow, 2011 (In Russian) | MR
[5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006 | MR
[6] G. G. Petrosyan, M. S. Afanasova, “On the Cauchy problem for a differential inclusion of fractional order with nonlinear boundary conditions”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2017, no. 1, 135–151 (In Russian)
[7] G. G. Petrosyan, “On a nonlocal Cauchy problem for functional differential equations with fractional derivative in the Banach space”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2012, no. 2, 207–212 (In Russian)
[8] G. G. Petrosyan, “On the structure of the solutions set of the Cauchy problem for a differential inclusions of fractional order in a Banach space”, Some Questions of Analysis, Algebra, Geometry and Mathematical Education, Voronezh State University, Voronezh, 2016, 7–8
[9] F. Mainardi, P. Paradisi, R. Gorenflo, Probability Distributions Generated by Fractional Diffusion Equations, Cornell University, New York, 2007, 46 pp.