On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 517-523 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the Hilbert space the abstract linear parabolic equation with nonlocal weight integral condition for the solution is resolved approximately by projection-difference method using time-implicit Euler’s method. Approximation of the problem by spatial variables is oriented on the finite element method. Errors estimations of approximate solutions, convergence of approximate solution to exact one and orders of rate of convergence are established.
Keywords: Hilbert space, nonlocal weighted integral condition
Mots-clés : parabolic equation, projection-diffrence method, time-implicit Euler’s method.
@article{VTAMU_2018_23_123_a21,
     author = {A. A. Petrova},
     title = {On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {517--523},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/}
}
TY  - JOUR
AU  - A. A. Petrova
TI  - On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 517
EP  - 523
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/
LA  - ru
ID  - VTAMU_2018_23_123_a21
ER  - 
%0 Journal Article
%A A. A. Petrova
%T On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 517-523
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/
%G ru
%F VTAMU_2018_23_123_a21
A. A. Petrova. On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 517-523. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/

[1] A. A. Petrova, V. V. Smagin, “Skhodimost metoda Galerkina priblizhennogo resheniya parabolicheskogo uravneniya s vesovym integralnym usloviem na reshenie”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2016, no. 8, 49–59 (In Russian)

[2] J.-P. Aubin, Approximate Solution of Elliptic Boundary Problems, Mir Publ., Moscow, 1977, 384 pp. (In Russian)

[3] A. A. Petrova, V. V. Smagin, “Solvability of the variational problem of parabolic type with a weighted integral condition”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2014, no. 4, 160–169 (In Russian)

[4] P. G. Ciarlet, Finite Element Method for Elliptic Problems, Mir Publ., Moscow, 1980, 512 pp. (In Russian)

[5] L. A. Oganesyan, L. A. Rukhovets, Variational-Difference Methods for Solving Elliptic Equations, Yerevan, 1979, 236 pp. (In Russian)

[6] V. V. Smagin, “The coercive estimations of errors of projection and projection-difference methods for parabolic equations”, Sbornik: Mathematics, 185:11 (1994), 79–94 (In Russian)

[7] J.-L. Lions, E. Magencs, Inhomogeneous Boundary Value Problems and Their Applications, Mir Publ., Moscow, 1971, 372 pp. (In Russian)