Mots-clés : parabolic equation, projection-diffrence method, time-implicit Euler’s method.
@article{VTAMU_2018_23_123_a21,
author = {A. A. Petrova},
title = {On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {517--523},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/}
}
TY - JOUR AU - A. A. Petrova TI - On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 517 EP - 523 VL - 23 IS - 123 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/ LA - ru ID - VTAMU_2018_23_123_a21 ER -
%0 Journal Article %A A. A. Petrova %T On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 517-523 %V 23 %N 123 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/ %G ru %F VTAMU_2018_23_123_a21
A. A. Petrova. On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 517-523. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/
[1] A. A. Petrova, V. V. Smagin, “Skhodimost metoda Galerkina priblizhennogo resheniya parabolicheskogo uravneniya s vesovym integralnym usloviem na reshenie”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2016, no. 8, 49–59 (In Russian)
[2] J.-P. Aubin, Approximate Solution of Elliptic Boundary Problems, Mir Publ., Moscow, 1977, 384 pp. (In Russian)
[3] A. A. Petrova, V. V. Smagin, “Solvability of the variational problem of parabolic type with a weighted integral condition”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2014, no. 4, 160–169 (In Russian)
[4] P. G. Ciarlet, Finite Element Method for Elliptic Problems, Mir Publ., Moscow, 1980, 512 pp. (In Russian)
[5] L. A. Oganesyan, L. A. Rukhovets, Variational-Difference Methods for Solving Elliptic Equations, Yerevan, 1979, 236 pp. (In Russian)
[6] V. V. Smagin, “The coercive estimations of errors of projection and projection-difference methods for parabolic equations”, Sbornik: Mathematics, 185:11 (1994), 79–94 (In Russian)
[7] J.-L. Lions, E. Magencs, Inhomogeneous Boundary Value Problems and Their Applications, Mir Publ., Moscow, 1971, 372 pp. (In Russian)