On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 517-523
Voir la notice de l'article provenant de la source Math-Net.Ru
In the Hilbert space the abstract linear parabolic equation with nonlocal weight integral condition for the solution is resolved approximately by projection-difference method using time-implicit Euler’s method. Approximation of the problem by spatial variables is oriented on the finite element method. Errors estimations of approximate solutions, convergence of approximate solution to exact one and orders of rate of convergence are established.
Keywords:
Hilbert space, nonlocal weighted integral condition
Mots-clés : parabolic equation, projection-diffrence method, time-implicit Euler’s method.
Mots-clés : parabolic equation, projection-diffrence method, time-implicit Euler’s method.
@article{VTAMU_2018_23_123_a21,
author = {A. A. Petrova},
title = {On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {517--523},
publisher = {mathdoc},
volume = {23},
number = {123},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/}
}
TY - JOUR AU - A. A. Petrova TI - On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 517 EP - 523 VL - 23 IS - 123 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/ LA - ru ID - VTAMU_2018_23_123_a21 ER -
%0 Journal Article %A A. A. Petrova %T On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 517-523 %V 23 %N 123 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/ %G ru %F VTAMU_2018_23_123_a21
A. A. Petrova. On the convergence and rate of the convergence of a projection-difference method for approximate solving a parabolic equation with weight integral condition. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 517-523. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a21/