@article{VTAMU_2018_23_123_a19,
author = {A. I. Perov},
title = {Kolmogorov matrix, and a continuous {Markov} chain with a finite number of states},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {503--509},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a19/}
}
TY - JOUR AU - A. I. Perov TI - Kolmogorov matrix, and a continuous Markov chain with a finite number of states JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 503 EP - 509 VL - 23 IS - 123 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a19/ LA - ru ID - VTAMU_2018_23_123_a19 ER -
A. I. Perov. Kolmogorov matrix, and a continuous Markov chain with a finite number of states. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 503-509. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a19/
[1] E. Hille, R. Phillips, Functional Analysis and Semigroups, Moscow, 1962, 832 pp. (In Russian)
[2] E. L. Blokh, L. I. Loshinskiy, V. Ya. Turin, The Basics of Linear Algebra and Some of Its Applications, Vysshaya Shkola Publ., Moscow, 1971, 216 pp. (In Russian)
[3] A. I. Perov, “Signs of ergodicity of Kolmogorov almost periodic systems”, Proceedings of the Russian Academy of Sciences, 380:1 (2001), 9–12 (In Russian) | MR
[4] A. I. Perov, “Signs of ergodicity of Markov almost periodic systems”, Proceedings of the Russian Academy of Sciences, 384:4 (2002), 455–459 (In Russian) | MR
[5] R. Bellman, Introduction to the Theory of Matrices, Nauka Publ., Moscow, 1969, 369 pp. (In Russian) | MR
[6] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967, 576 pp. | MR
[7] B. P. Demidovich, Lectures on Mathematical Stability Theory, Nauka Publ., Moscow, 1967, 472 pp. (In Russian) | MR
[8] F. R. Gantmacher, M. G. Krein, Oscillatory Matrices and Kernels and Small Oscillations of Mechanical Systems, State Publ. of Technical and Theoretical Literature, Moscow–Leningrad, 1950, 360 pp. (In Russian) | MR
[9] E. Seneta, Non-negative Matrices and Markov Chains, Springer, Sydney, 2006, 292 pp. | MR