Discrete systems and neighboring structures
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 473-478
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article, neighborhood structures (digraphs of a special type) are defined and their relationship with discrete control systems is discussed. The archetypes of the neighborhood structures and the control systems corresponding to these archetypes are listed.
Keywords:
discrete system, neighborhood structure, digraph, archetype.
@article{VTAMU_2018_23_123_a16,
author = {N. M. Mishachev and A. M. Shmyrin},
title = {Discrete systems and neighboring structures},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {473--478},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a16/}
}
N. M. Mishachev; A. M. Shmyrin. Discrete systems and neighboring structures. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 473-478. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a16/
[1] A. A. Pervozvanskiy, Course of Automatic Control Theory, Nauka Publ., Moscow, 1986, 616 pp. (In Russian)
[2] N. M. Mishachev, A. M. Shmyrin, “Neighborhood Structures and Metastructural Identification”, Taurida Journal of Computer Science Theory and Mathematics, 37:4 (2017), 87–95 (In Russian) | MR
[3] A. M. Shmyrin, N. M. Mishachyov, A. S. Kanyugina, “Quasi-static neighborhood systems”, Modern High Technologies, 2018, no. 4, 137–142 (In Russian)