@article{VTAMU_2018_23_123_a14,
author = {V. V. Malygina},
title = {On the stability of a population dynamics model with delay},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {456--465},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a14/}
}
V. V. Malygina. On the stability of a population dynamics model with delay. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 456-465. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a14/
[1] I. A. Tarasov, N. V. Pertsev, “The analysis of solutions to an integro-differential equation emerging in population dynamics”, Vestnik Omskogo universiteta, 2003, no. 2, 13–15 (In Russian)
[2] N. V. Pertsev, “On the stability of the zero solution of a system of integro-differential equations emerging in population dynamics”, Izvestiya vuzov. Matematika, 1999, no. 8, 47–53 (In Russian)
[3] V. V. Malygina, M. V. Mulyukov, N. V. Percev, “On the local stability of a population dynamics model with aftereffect”, Siberian Electronic Mathematical Reports, 11 (2014), 951–957 (In Russian) | MR
[4] V. V. Malygina, M. V. Mulyukov, “On the local stability of a population dynamics model with three evolution stages”, Izvestiya vuzov. Matematika, 2017, no. 4, 35–42 (In Russian)
[5] V. V. Malygina, T. L. Sabatulina, “Stability of functional differential equations with bounded aftereffect”, Izvestiya vuzov. Matematika, 2014, no. 4, 25–63 (In Russian)
[6] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the Theory of Functional Differential Equations, Nauka Publ., Moscow, 1991, 280 pp. (In Russian) | MR
[7] N. V. Azbelev, V. V. Malygina, “On the stability of a trivial solution to nonlinear equations with aftereffect”, Izvestiya vuzov. Matematika, 1994, no. 6, 20–27 (In Russian)