On the stability of a population dynamics model with delay
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 456-465
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a model of the dynamics of an isolated population whose individuals pass through the three stages of evolution. We use a nonlinear autonomous differential equation with concentrated and distributed delay for description of the model. Effective sufficient conditions for the asymptotic stability of the nontrivial equilibrium point are obtained.
Keywords:
population dynamics, delay differential equation, stability.
@article{VTAMU_2018_23_123_a14,
author = {V. V. Malygina},
title = {On the stability of a population dynamics model with delay},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {456--465},
publisher = {mathdoc},
volume = {23},
number = {123},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a14/}
}
TY - JOUR AU - V. V. Malygina TI - On the stability of a population dynamics model with delay JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 456 EP - 465 VL - 23 IS - 123 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a14/ LA - ru ID - VTAMU_2018_23_123_a14 ER -
V. V. Malygina. On the stability of a population dynamics model with delay. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 456-465. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a14/