On the stability of a population dynamics model with delay
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 456-465 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model of the dynamics of an isolated population whose individuals pass through the three stages of evolution. We use a nonlinear autonomous differential equation with concentrated and distributed delay for description of the model. Effective sufficient conditions for the asymptotic stability of the nontrivial equilibrium point are obtained.
Keywords: population dynamics, delay differential equation, stability.
@article{VTAMU_2018_23_123_a14,
     author = {V. V. Malygina},
     title = {On the stability of a population dynamics model with delay},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {456--465},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a14/}
}
TY  - JOUR
AU  - V. V. Malygina
TI  - On the stability of a population dynamics model with delay
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 456
EP  - 465
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a14/
LA  - ru
ID  - VTAMU_2018_23_123_a14
ER  - 
%0 Journal Article
%A V. V. Malygina
%T On the stability of a population dynamics model with delay
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 456-465
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a14/
%G ru
%F VTAMU_2018_23_123_a14
V. V. Malygina. On the stability of a population dynamics model with delay. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 456-465. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a14/

[1] I. A. Tarasov, N. V. Pertsev, “The analysis of solutions to an integro-differential equation emerging in population dynamics”, Vestnik Omskogo universiteta, 2003, no. 2, 13–15 (In Russian)

[2] N. V. Pertsev, “On the stability of the zero solution of a system of integro-differential equations emerging in population dynamics”, Izvestiya vuzov. Matematika, 1999, no. 8, 47–53 (In Russian)

[3] V. V. Malygina, M. V. Mulyukov, N. V. Percev, “On the local stability of a population dynamics model with aftereffect”, Siberian Electronic Mathematical Reports, 11 (2014), 951–957 (In Russian) | MR

[4] V. V. Malygina, M. V. Mulyukov, “On the local stability of a population dynamics model with three evolution stages”, Izvestiya vuzov. Matematika, 2017, no. 4, 35–42 (In Russian)

[5] V. V. Malygina, T. L. Sabatulina, “Stability of functional differential equations with bounded aftereffect”, Izvestiya vuzov. Matematika, 2014, no. 4, 25–63 (In Russian)

[6] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the Theory of Functional Differential Equations, Nauka Publ., Moscow, 1991, 280 pp. (In Russian) | MR

[7] N. V. Azbelev, V. V. Malygina, “On the stability of a trivial solution to nonlinear equations with aftereffect”, Izvestiya vuzov. Matematika, 1994, no. 6, 20–27 (In Russian)