@article{VTAMU_2018_23_123_a13,
author = {N. V. Malay and N. N. Samoilova},
title = {Solution of the system of {Navier-Stokes} equations linearized with respect to the velocity with regard of a power-low dependence of viscosity, thermal conductivity and the gaseous medium density on the temperature},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {448--455},
year = {2018},
volume = {23},
number = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a13/}
}
TY - JOUR AU - N. V. Malay AU - N. N. Samoilova TI - Solution of the system of Navier-Stokes equations linearized with respect to the velocity with regard of a power-low dependence of viscosity, thermal conductivity and the gaseous medium density on the temperature JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 448 EP - 455 VL - 23 IS - 123 UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a13/ LA - ru ID - VTAMU_2018_23_123_a13 ER -
%0 Journal Article %A N. V. Malay %A N. N. Samoilova %T Solution of the system of Navier-Stokes equations linearized with respect to the velocity with regard of a power-low dependence of viscosity, thermal conductivity and the gaseous medium density on the temperature %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 448-455 %V 23 %N 123 %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a13/ %G ru %F VTAMU_2018_23_123_a13
N. V. Malay; N. N. Samoilova. Solution of the system of Navier-Stokes equations linearized with respect to the velocity with regard of a power-low dependence of viscosity, thermal conductivity and the gaseous medium density on the temperature. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 448-455. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a13/
[1] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Mir Publ., Moscow, 1960 (In Russian)
[2] V. N. Koterov, Yu. D. Shmyglevskiy, A. V. Shcheprov, “A survey of analytical studies of steady viscous incompressible flows (2000-2004)”, Computational Mathematics and Mathematical Physics, 45:5 (2005), 899–920 (In Russian) | MR
[3] O. A. Ladyzhenskaya, “Sixth problem of the millennium: Navier–Stokes equations, existence and smoothness”, Russian Mathematical Surveys, 58:2 (350) (2003), 45–78 (In Russian) | MR
[4] N. V. Malay, N. N. Mironova, A. V. Glushak, “Solution of the boundary value problem for the Navier–Stokes equation for the flow of a gaseous medium past a heated spheroid”, Differential Equations, 48:6 (2012), 879–883 (In Russian) | MR
[5] E. A. Koddington, N. Levinson, Theory of Ordinary Differential Equations, Foreign Languages Publishing House, Moscow, 1958 (In Russian)
[6] E. Kamke, Typical Differential Equations Guide, State Publ. of Technical and Theoretical Literature, Moscow, 1981, 703 pp. (In Russian)