Solution of the system of Navier-Stokes equations linearized with respect to the velocity with regard of a power-low dependence of viscosity, thermal conductivity and the gaseous medium density on the temperature
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 448-455 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We received the solution of the system of Navier-Stokes equations linearized with respect to the velocity in the spheroidal coordinate system with regard of a power-law dependence of viscosity, thermal conductivity and the gaseous medium density on the temperature by means of generalized power series.
Keywords: system of Navier-Stokes equations, a spheroid.
@article{VTAMU_2018_23_123_a13,
     author = {N. V. Malay and N. N. Samoilova},
     title = {Solution of the system of {Navier-Stokes} equations linearized with respect to the velocity with regard of a power-low dependence of viscosity, thermal conductivity and the gaseous medium density on the temperature},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {448--455},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a13/}
}
TY  - JOUR
AU  - N. V. Malay
AU  - N. N. Samoilova
TI  - Solution of the system of Navier-Stokes equations linearized with respect to the velocity with regard of a power-low dependence of viscosity, thermal conductivity and the gaseous medium density on the temperature
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 448
EP  - 455
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a13/
LA  - ru
ID  - VTAMU_2018_23_123_a13
ER  - 
%0 Journal Article
%A N. V. Malay
%A N. N. Samoilova
%T Solution of the system of Navier-Stokes equations linearized with respect to the velocity with regard of a power-low dependence of viscosity, thermal conductivity and the gaseous medium density on the temperature
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 448-455
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a13/
%G ru
%F VTAMU_2018_23_123_a13
N. V. Malay; N. N. Samoilova. Solution of the system of Navier-Stokes equations linearized with respect to the velocity with regard of a power-low dependence of viscosity, thermal conductivity and the gaseous medium density on the temperature. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 448-455. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a13/

[1] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Mir Publ., Moscow, 1960 (In Russian)

[2] V. N. Koterov, Yu. D. Shmyglevskiy, A. V. Shcheprov, “A survey of analytical studies of steady viscous incompressible flows (2000-2004)”, Computational Mathematics and Mathematical Physics, 45:5 (2005), 899–920 (In Russian) | MR

[3] O. A. Ladyzhenskaya, “Sixth problem of the millennium: Navier–Stokes equations, existence and smoothness”, Russian Mathematical Surveys, 58:2 (350) (2003), 45–78 (In Russian) | MR

[4] N. V. Malay, N. N. Mironova, A. V. Glushak, “Solution of the boundary value problem for the Navier–Stokes equation for the flow of a gaseous medium past a heated spheroid”, Differential Equations, 48:6 (2012), 879–883 (In Russian) | MR

[5] E. A. Koddington, N. Levinson, Theory of Ordinary Differential Equations, Foreign Languages Publishing House, Moscow, 1958 (In Russian)

[6] E. Kamke, Typical Differential Equations Guide, State Publ. of Technical and Theoretical Literature, Moscow, 1981, 703 pp. (In Russian)