Attainable values of on-target functionals for a functional differential system with impulses
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 441-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a linear functional differential system with aftereffect and impulses, a description of the attainability set is given. The attainability is considered in the term of a given system of on-target functionals in the case of polyhedral constraints with respect to control and impulses.
Keywords: functional differential equations, control problems, attainability set.
@article{VTAMU_2018_23_123_a12,
     author = {V. P. Maksimov},
     title = {Attainable values of on-target functionals for a functional differential system with impulses},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {441--447},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a12/}
}
TY  - JOUR
AU  - V. P. Maksimov
TI  - Attainable values of on-target functionals for a functional differential system with impulses
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 441
EP  - 447
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a12/
LA  - ru
ID  - VTAMU_2018_23_123_a12
ER  - 
%0 Journal Article
%A V. P. Maksimov
%T Attainable values of on-target functionals for a functional differential system with impulses
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 441-447
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a12/
%G ru
%F VTAMU_2018_23_123_a12
V. P. Maksimov. Attainable values of on-target functionals for a functional differential system with impulses. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 441-447. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a12/

[1] V. P. Maksimov, “On a class of optimal control problems for functional differential systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 1, 2018, 131–142 (In Russian)

[2] V. P. Maksimov, “Control of functional differential system in conditions of impulse disturbances”, Russian Mathematics, 2013, no. 9, 70–74 (In Russian)

[3] V. P. Maksimov, “Impulse correction of control for dynamic models with aftereffect”, Perm University Herald. Economy, 2009, no. 1 (1), 96–100 (In Russian)

[4] A. V. Anokhin, “On linear impulse systems for functional-differential equations”, Proceedings of the USSR Academy of Sciences, 286:5 (1986), 1037–1040 (In Russian) | MR

[5] N. V. Azbelev, L. F. Rakhmatullina, “Theory of linear abstract functional differential equations and applications”, Memoirs on Diff. Equat. and Math. Phys., 8 (1996), 1–102 | MR

[6] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Elements of Functional-Differentional Equations Modern Theory, Institute of Computer Science Publ., Moscow, 2002, 384 pp. (In Russian) | MR

[7] N. V. Azbelev, V. P. Maksimov, P. M. Simonov, “Theory of functional differential equations and applications”, International Journal of Pure and Applied Mathematics, 69:2 (2011), 203–235 | MR

[8] V. P. Maksimov, “Theory of functional Differential equations and some problems in economic dynamics”, Differential and Difference Equations and Applications, Proceedings of the Conference on Differential and Difference Equations and Applications, Hindawi Publishing Corporation, New York–Cairo, 2006, 74–82

[9] V. P. Maksimov, “On the property of controllability with respect to a family of linear functional”, Functional Differential Equations, 16:3 (2009), 517–527 | MR

[10] N. N. Krasovskiy, The Theory of Motion Control, Nauka Publ., Moscow, 1968, 476 pp. (In Russian)

[11] A. B. Kurzhanskiy, The Control and Observation Under Conditions of Indefiniteness, Nauka Publ., Moscow, 1977, 392 pp. (In Russian)

[12] E. K. Kostousova, “On polyhedral estimates for reachable sets of differential systems with bilinear uncertainty”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 4, 2012, 195–210 (In Russian) | MR

[13] V. P. Maksimov, “The Cauchy formula for a functional-differential equation”, Differential Equations, 13:4 (1977), 601–606 (In Russian) | MR

[14] V. P. Maksimov, Questions of the General Theory of Functional Differential Equations, Perm State University Publ., Perm, 2003, 306 pp. (In Russian)