Hurwitz matrix, Lyapunov and Dirichlet on the sustainability of Lyapunov’s
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 431-436
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The concepts of Hurwitz, Lyapunov and Dirichlet matrices are introduced for the convenience of the stability of linear systems with constant coefficients. They allow us to describe all the cases of interest in the stability theory of linear systems with constant coefficients. A similar classification is proposed for systems of linear differential equations with periodic coefficients. Monodromy matrices of such systems can be either Hurwitz matrices or Lyapunov matrices or Dirichlet matrices (in the discrete sense) in a stable case. The new material relates to systems with variable coefficients.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
stability of linear systems with constant, periodic coefficients, Hurwitz, Lyapunov and Dirichlet matrices
Mots-clés : classification of monodromy matrices.
                    
                  
                
                
                Mots-clés : classification of monodromy matrices.
@article{VTAMU_2018_23_123_a10,
     author = {I. D. Kostrub},
     title = {Hurwitz matrix, {Lyapunov} and {Dirichlet} on the sustainability of {Lyapunov{\textquoteright}s}},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {431--436},
     publisher = {mathdoc},
     volume = {23},
     number = {123},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a10/}
}
                      
                      
                    TY - JOUR AU - I. D. Kostrub TI - Hurwitz matrix, Lyapunov and Dirichlet on the sustainability of Lyapunov’s JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 431 EP - 436 VL - 23 IS - 123 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a10/ LA - ru ID - VTAMU_2018_23_123_a10 ER -
I. D. Kostrub. Hurwitz matrix, Lyapunov and Dirichlet on the sustainability of Lyapunov’s. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 431-436. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a10/
