Hurwitz matrix, Lyapunov and Dirichlet on the sustainability of Lyapunov’s
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 431-436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concepts of Hurwitz, Lyapunov and Dirichlet matrices are introduced for the convenience of the stability of linear systems with constant coefficients. They allow us to describe all the cases of interest in the stability theory of linear systems with constant coefficients. A similar classification is proposed for systems of linear differential equations with periodic coefficients. Monodromy matrices of such systems can be either Hurwitz matrices or Lyapunov matrices or Dirichlet matrices (in the discrete sense) in a stable case. The new material relates to systems with variable coefficients.
Keywords: stability of linear systems with constant, periodic coefficients, Hurwitz, Lyapunov and Dirichlet matrices
Mots-clés : classification of monodromy matrices.
@article{VTAMU_2018_23_123_a10,
     author = {I. D. Kostrub},
     title = {Hurwitz matrix, {Lyapunov} and {Dirichlet} on the sustainability of {Lyapunov{\textquoteright}s}},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {431--436},
     year = {2018},
     volume = {23},
     number = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a10/}
}
TY  - JOUR
AU  - I. D. Kostrub
TI  - Hurwitz matrix, Lyapunov and Dirichlet on the sustainability of Lyapunov’s
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 431
EP  - 436
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a10/
LA  - ru
ID  - VTAMU_2018_23_123_a10
ER  - 
%0 Journal Article
%A I. D. Kostrub
%T Hurwitz matrix, Lyapunov and Dirichlet on the sustainability of Lyapunov’s
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 431-436
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a10/
%G ru
%F VTAMU_2018_23_123_a10
I. D. Kostrub. Hurwitz matrix, Lyapunov and Dirichlet on the sustainability of Lyapunov’s. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 431-436. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a10/

[1] B. P. Demidovich, Lectures on the Mathematical Stability Theory, Nauka Publ., Moscow, 1967, 472 pp. (In Russian) | MR

[2] Dzh. Sansone, Ordinary Differential Equations, v. 2, Foreign Languages Publishing House, Moscow, 1954, 414 pp. (In Russian)

[3] L. S. Pontryagin, Ordinary Differential Equations, 4th, Fizmatlit Publ., Moscow, 1974, 331 pp. (In Russian)

[4] A. V. Borovskikh, Differential Equations, v. I, Urait Publ., Moscow, 2016, 326 pp. (In Russian)

[5] A. V. Borovskikh, Differential Equations, v. II, Urait Publ., Moscow, 2016, 276 pp. (In Russian)

[6] A. I. Perov, I. D. Kostrub, Signs of Stability of Periodic Solutions of Differential Equations Systems Based on the Off-Diagonal Non-Negative Matrices Theory, Publishing and Printing Center “Nauchnaya kniga” Ltd., Voronezh, 2015, 124 pp. (In Russian)