Mots-clés : quantization, Poisson transforms.
@article{VTAMU_2018_23_123_a1,
author = {V. F. Molchanov},
title = {Polynomial quantiztion and overalgebra for hyperboloid of one sheet},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {353--360},
year = {2018},
volume = {23},
number = {123},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a1/}
}
V. F. Molchanov. Polynomial quantiztion and overalgebra for hyperboloid of one sheet. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 353-360. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a1/
[1] V. F. Molchanov, “Quantization on para-Hermitian symmetric spaces”, Amer. Math. Soc. Transl. Ser. 2, 175 (1996), 81–95 | MR
[2] V. F. Molchanov, N. B. Volotova, “Polynomial quantization on rank one para-Hermitian symmetric spaces”, Acta Appl. Math., 81:1–3 (2004), 215–232 | DOI | MR
[3] V. F. Molchanov, “Berezin quantization as a part of the representation theory”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1235–1246 | DOI
[4] Yu. A. Neretin, “The action of an overalgebra in the Plancherel decomposition and shift operators in an imaginary direction”, Izvestiya: Mathematics, 66:5 (2002), 171–182 (In Russian) | DOI | MR
[5] V. F. Molchanov, “Canonical representations and overgroups”, Amer. Math. Soc. Transl., 2, 210, 2003, 213–224 | MR
[6] V. F. Molchanov, “Canonical representations for hyperboloids: an interaction with an overalgebra”, Geometric Methods in Physics, 2016, 129–138 | DOI | MR