Polynomial quantiztion and overalgebra for hyperboloid of one sheet
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 353-360 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the multiplication of symbols in polynomial quantization is exactly an action of an overalgebra on the space of these symbols.
Keywords: representations, hyperboloids
Mots-clés : quantization, Poisson transforms.
@article{VTAMU_2018_23_123_a1,
     author = {V. F. Molchanov},
     title = {Polynomial quantiztion and overalgebra for hyperboloid of one sheet},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {353--360},
     year = {2018},
     volume = {23},
     number = {123},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a1/}
}
TY  - JOUR
AU  - V. F. Molchanov
TI  - Polynomial quantiztion and overalgebra for hyperboloid of one sheet
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 353
EP  - 360
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a1/
LA  - en
ID  - VTAMU_2018_23_123_a1
ER  - 
%0 Journal Article
%A V. F. Molchanov
%T Polynomial quantiztion and overalgebra for hyperboloid of one sheet
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 353-360
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a1/
%G en
%F VTAMU_2018_23_123_a1
V. F. Molchanov. Polynomial quantiztion and overalgebra for hyperboloid of one sheet. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 353-360. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a1/

[1] V. F. Molchanov, “Quantization on para-Hermitian symmetric spaces”, Amer. Math. Soc. Transl. Ser. 2, 175 (1996), 81–95 | MR

[2] V. F. Molchanov, N. B. Volotova, “Polynomial quantization on rank one para-Hermitian symmetric spaces”, Acta Appl. Math., 81:1–3 (2004), 215–232 | DOI | MR

[3] V. F. Molchanov, “Berezin quantization as a part of the representation theory”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1235–1246 | DOI

[4] Yu. A. Neretin, “The action of an overalgebra in the Plancherel decomposition and shift operators in an imaginary direction”, Izvestiya: Mathematics, 66:5 (2002), 171–182 (In Russian) | DOI | MR

[5] V. F. Molchanov, “Canonical representations and overgroups”, Amer. Math. Soc. Transl., 2, 210, 2003, 213–224 | MR

[6] V. F. Molchanov, “Canonical representations for hyperboloids: an interaction with an overalgebra”, Geometric Methods in Physics, 2016, 129–138 | DOI | MR