On stabilization of differential systems with hybrid feedback control
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 331-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper two-dimensional systems of differential equations are considered together with their stabilization by a hybrid feedback control. A stabilizing hybrid control for an arbitrary controlled system that belongs to a certain category within two-dimensional systems is constructed as a result of this study and some stabilization proprieties of the system with the obtained hybrid control are presented.
Keywords: stabilization, hybrid feedback control, linear hybrid control, upper Lyapunov Exponent.
@article{VTAMU_2018_23_123_a0,
     author = {M. S. Alves and M. J. Alves},
     title = {On stabilization of differential systems with hybrid feedback control},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {331--352},
     year = {2018},
     volume = {23},
     number = {123},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a0/}
}
TY  - JOUR
AU  - M. S. Alves
AU  - M. J. Alves
TI  - On stabilization of differential systems with hybrid feedback control
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 331
EP  - 352
VL  - 23
IS  - 123
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a0/
LA  - en
ID  - VTAMU_2018_23_123_a0
ER  - 
%0 Journal Article
%A M. S. Alves
%A M. J. Alves
%T On stabilization of differential systems with hybrid feedback control
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 331-352
%V 23
%N 123
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a0/
%G en
%F VTAMU_2018_23_123_a0
M. S. Alves; M. J. Alves. On stabilization of differential systems with hybrid feedback control. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 123, pp. 331-352. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_123_a0/

[1] E. Litsyn, Y. Nepomnyashchikh, A. Ponossov, “Classification of linear dynamical systems in the plane admitting a stabilizing hybrid feedback control”, Journal on Dynamical and Control Systems, 6:4 (2000), 477–501 | DOI | MR

[2] E. Litsyn, M. Myasnikova, Y. Nepomnyashchikh, A. Ponossov, “Efficient criteria for stabilization of planar linear systems by hybrid feedback controls”, Abstract and Applied Analysis, 2004, no. 6, 487–499 | DOI | MR

[3] E. Litsyn, Y. Nepomnyashchikh, A. Ponossov, “Control of the Lyapunov exponents of dynamical systems in the plane with incomplete observation”, Nonlinear Analysis. Series A: Theory, Methods Applications, Special issue: Hybrid Systems and Applications, 64:2 (2005), 329–351 | MR

[4] M. J. Alves, Singular Second Order Functional Differential Equations, Perm State University Publ., Perm, 2000, 179 pp. (In Russian)

[5] I. G. Korotaeva, Exponential Stabilization of Two-Dimensional Linear Hybrid Systems, Perm State University Publ., Perm, 2003, 35 pp. (In Russian)

[6] M. A. Myasnikova, Classification of Two-Dimensional Linear Hybrid Systems, Perm State University Publ., Perm, 2003, 51 pp. (In Russian)

[7] D. C. Lay, Linear Algebra and Its Applications, Pearson Education Inc., Boston, 2012, 472 pp.