Application of the existence theorem and estimate of solutions of the perturbed inclusion to the study of the perturbed linear problem
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1277-1284
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article, a statement about estimation of the closeness of solutions of the perturbed inclusion to a given continuous function is formulated. An application of this statement to the study of perturbation of a linear boundary value problem for functional-differential equations is considered.
Keywords: perturbed inclusion, perturbed linear boundary value problem.
Mots-clés : estimation of solutions
@article{VTAMU_2017_22_6_a7,
     author = {A. A. Grigorenko},
     title = {Application of the existence theorem and estimate of solutions of the perturbed inclusion to the study of the perturbed linear problem},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {1277--1284},
     year = {2017},
     volume = {22},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a7/}
}
TY  - JOUR
AU  - A. A. Grigorenko
TI  - Application of the existence theorem and estimate of solutions of the perturbed inclusion to the study of the perturbed linear problem
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 1277
EP  - 1284
VL  - 22
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a7/
LA  - ru
ID  - VTAMU_2017_22_6_a7
ER  - 
%0 Journal Article
%A A. A. Grigorenko
%T Application of the existence theorem and estimate of solutions of the perturbed inclusion to the study of the perturbed linear problem
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 1277-1284
%V 22
%N 6
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a7/
%G ru
%F VTAMU_2017_22_6_a7
A. A. Grigorenko. Application of the existence theorem and estimate of solutions of the perturbed inclusion to the study of the perturbed linear problem. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1277-1284. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a7/

[1] N. V. Azbelev, V. P. Maksimov, L. F. Rahmatulina, Introduction to the Theory of Functional-Differential Equations, Nauka, Moscow, 1991, 280 pp. (In Russian) | MR

[2] V. I. Blagodatskikh, A. F. Filippov, “Differential inclusions and optimal control”, Proc. Steklov Inst. Math., 169 (1986), 199–259 | MR | Zbl | Zbl

[3] P. I. Chugunov, “Properties of solutions of differential inclusions and managed systems”, Applied Mathematics and Application Packages, 1980, 155–179 (In Russian)

[4] A. A. Tolstonogov, P. I. Chugunov, “Set of solutions of a differential inclusion in Banach space. I”, Siberian Mathematical Journal, 24:6 (1983), 941–954 | DOI | MR | Zbl | Zbl

[5] A. I. Bulgakov, L. I. Tkach, “Some results on the perturbation theory of multivalued operators with convex closed values of a Hammerstein-type map with nonconvex images and their applications”, Tambov University Reports. Series: Natural and Technical Sciences, 2:2 (1997), 111–120 (In Russian)

[6] A. I. Bulgakov, L. I. Tkach, “Asymptotic representation of sets of $\delta$-solutions of inclusions of Hammerstein type”, Tambov University Reports. Series: Natural and Technical Sciences, 2:3 (1997), 294–298 (In Russian)

[7] A. I. Bulgakov, L. I. Tkach, “Perturbation of a convex-valued operator by a set-valued map of Hammerstein type with non-convex values, and boundary-value problems for functional-differential inclusions”, Sbornik: Mathematics, 189:6 (1998), 821–848 | DOI | MR | Zbl