Mots-clés : estimation of solutions
@article{VTAMU_2017_22_6_a7,
author = {A. A. Grigorenko},
title = {Application of the existence theorem and estimate of solutions of the perturbed inclusion to the study of the perturbed linear problem},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {1277--1284},
year = {2017},
volume = {22},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a7/}
}
TY - JOUR AU - A. A. Grigorenko TI - Application of the existence theorem and estimate of solutions of the perturbed inclusion to the study of the perturbed linear problem JO - Vestnik rossijskih universitetov. Matematika PY - 2017 SP - 1277 EP - 1284 VL - 22 IS - 6 UR - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a7/ LA - ru ID - VTAMU_2017_22_6_a7 ER -
%0 Journal Article %A A. A. Grigorenko %T Application of the existence theorem and estimate of solutions of the perturbed inclusion to the study of the perturbed linear problem %J Vestnik rossijskih universitetov. Matematika %D 2017 %P 1277-1284 %V 22 %N 6 %U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a7/ %G ru %F VTAMU_2017_22_6_a7
A. A. Grigorenko. Application of the existence theorem and estimate of solutions of the perturbed inclusion to the study of the perturbed linear problem. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1277-1284. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a7/
[1] N. V. Azbelev, V. P. Maksimov, L. F. Rahmatulina, Introduction to the Theory of Functional-Differential Equations, Nauka, Moscow, 1991, 280 pp. (In Russian) | MR
[2] V. I. Blagodatskikh, A. F. Filippov, “Differential inclusions and optimal control”, Proc. Steklov Inst. Math., 169 (1986), 199–259 | MR | Zbl | Zbl
[3] P. I. Chugunov, “Properties of solutions of differential inclusions and managed systems”, Applied Mathematics and Application Packages, 1980, 155–179 (In Russian)
[4] A. A. Tolstonogov, P. I. Chugunov, “Set of solutions of a differential inclusion in Banach space. I”, Siberian Mathematical Journal, 24:6 (1983), 941–954 | DOI | MR | Zbl | Zbl
[5] A. I. Bulgakov, L. I. Tkach, “Some results on the perturbation theory of multivalued operators with convex closed values of a Hammerstein-type map with nonconvex images and their applications”, Tambov University Reports. Series: Natural and Technical Sciences, 2:2 (1997), 111–120 (In Russian)
[6] A. I. Bulgakov, L. I. Tkach, “Asymptotic representation of sets of $\delta$-solutions of inclusions of Hammerstein type”, Tambov University Reports. Series: Natural and Technical Sciences, 2:3 (1997), 294–298 (In Russian)
[7] A. I. Bulgakov, L. I. Tkach, “Perturbation of a convex-valued operator by a set-valued map of Hammerstein type with non-convex values, and boundary-value problems for functional-differential inclusions”, Sbornik: Mathematics, 189:6 (1998), 821–848 | DOI | MR | Zbl