On one inverse problem of sources density distribution reconstruction in a mixed boundary value problem for the Poisson equation
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1261-1267
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An inverse problem with mixed boundary value conditions for the Poisson equation for bodies of constant thickness is considered, aiming to reconstruct the sources density distribution. A stable solution of the problem is obtained.
Keywords: ill-posed problem, inverse problem of the potential, the Sretenskiy class of bodies, method of Tikhonov regularization.
@article{VTAMU_2017_22_6_a5,
     author = {A. V. Gerasimova and E. B. Laneev and M. N. Muratov and E. Yu. Ponomarenko and V. V. Surovtsev},
     title = {On one inverse problem of sources density distribution reconstruction in a mixed boundary value problem for the {Poisson} equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {1261--1267},
     year = {2017},
     volume = {22},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a5/}
}
TY  - JOUR
AU  - A. V. Gerasimova
AU  - E. B. Laneev
AU  - M. N. Muratov
AU  - E. Yu. Ponomarenko
AU  - V. V. Surovtsev
TI  - On one inverse problem of sources density distribution reconstruction in a mixed boundary value problem for the Poisson equation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 1261
EP  - 1267
VL  - 22
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a5/
LA  - ru
ID  - VTAMU_2017_22_6_a5
ER  - 
%0 Journal Article
%A A. V. Gerasimova
%A E. B. Laneev
%A M. N. Muratov
%A E. Yu. Ponomarenko
%A V. V. Surovtsev
%T On one inverse problem of sources density distribution reconstruction in a mixed boundary value problem for the Poisson equation
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 1261-1267
%V 22
%N 6
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a5/
%G ru
%F VTAMU_2017_22_6_a5
A. V. Gerasimova; E. B. Laneev; M. N. Muratov; E. Yu. Ponomarenko; V. V. Surovtsev. On one inverse problem of sources density distribution reconstruction in a mixed boundary value problem for the Poisson equation. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1261-1267. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a5/

[1] L. N. Sretenskiy, “O edinstvennosti opredeleniya formy prityagivayushchego tela po znacheniyam ego vneshnego potentsiala”, DAN SSSR, 99:1 (1954), 21–22 (In Russian) | MR

[2] A. I. Prilepko, “Inverse problems of potential theory (elliptic, parabolic, hyperbolic, and transport equations)”, Mathematical Notes, 14:5 (1973), 990–996 | DOI | MR

[3] A. N. Tikhonov, V. Y. Arsenin, Methods for solving incorrect problems, Nauka, Moscow, 1979, 288 pp. (In Russian)

[4] E. B. Laneev, “Ustoychivoe reshenie odnoy nekorrektno postavlennoy kraevoy zadachi dlya potentsial'nogo polya”, Vestnik RUDN. Seriya Prikladnaya matematika i informatika, 2000, no. 1, 105–112 (In Russian) | Zbl

[5] A. N. Tihonov, V. B. Glasko, O. K. Litvinenko, V. R. Melihov, “O prodolzhenii potentsiala v storonu vozmushchayushchih mass na osnove metoda regulyarizatsii”, Izvestiya AN SSSR. Fizika Zemli, 1968, no. 1, 30–48 (In Russian)

[6] E. B. Laneev, M. N. Muratov, E. Yu Ponomarenko, “Linear inverse problem of potential in the odd-periodic models”, Tambov University Reports. Series: Natural and Technical Sciences, 20:5 (2015), 1249–1255 (In Russian)

[7] E. B. Laneev, M. N. Muratov, E. Yu. Ponomarenko, 0. Baaj, “On a linear inverse problem for the newtonian potential for bodies of constant thickness”, Tambov University Reports. Series: Natural and Technical Sciences, 21:6 (2016), 2019–2025 (In Russian)

[8] E. B. Laneev, M. N. Muratov, “Ob odnoy obratnoy zadache k kraevoy zadache dlya uravneniya Laplasa s usloviem tret'ego roda na netochno zadannoy granitse”, Vestnik RUDN. Seriya Matematika, 2003, no. 10(1), 100–110 (In Russian)

[9] G. R. Ivanitskii, “Thermovision in medicine”, Herald of the Russian Academy of Sciences, 76:1 (2006), 44–53 | DOI | MR