One estimate of fixed points and coincidence points of mappings of metric spaces
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1255-1260
Cet article a éte moissonné depuis la source Math-Net.Ru
For single-valued and multi-valued mappings acting in a metric space $X$ and satisfying the Lipschitz condition, we propose a lower estimate of the distance from a given element $x_0\in X$ to a fixed point. Thus, we find $r>0$ such that there are no fixed points in the ball with center at $x_0$ of radius $r.$ The proof follows directly from the triangle inequality. The result is extended to $(q_1, q_2)$- metric spaces. An analogous estimate is obtained for coincidence points of covering and Lipschitz mappings of metric spaces.
Keywords:
fixed point, point of coincidence, metric space, Banach theorem, Nadler’s theorem, lower estimate of the distance from a given element to a fixed point.
@article{VTAMU_2017_22_6_a4,
author = {M. V. Borzova and E. S. Zhukovskiy and N. Yu. Chernikova},
title = {One estimate of fixed points and coincidence points of mappings of metric spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {1255--1260},
year = {2017},
volume = {22},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a4/}
}
TY - JOUR AU - M. V. Borzova AU - E. S. Zhukovskiy AU - N. Yu. Chernikova TI - One estimate of fixed points and coincidence points of mappings of metric spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2017 SP - 1255 EP - 1260 VL - 22 IS - 6 UR - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a4/ LA - ru ID - VTAMU_2017_22_6_a4 ER -
%0 Journal Article %A M. V. Borzova %A E. S. Zhukovskiy %A N. Yu. Chernikova %T One estimate of fixed points and coincidence points of mappings of metric spaces %J Vestnik rossijskih universitetov. Matematika %D 2017 %P 1255-1260 %V 22 %N 6 %U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a4/ %G ru %F VTAMU_2017_22_6_a4
M. V. Borzova; E. S. Zhukovskiy; N. Yu. Chernikova. One estimate of fixed points and coincidence points of mappings of metric spaces. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1255-1260. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a4/