One estimate of fixed points and coincidence points of mappings of metric spaces
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1255-1260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For single-valued and multi-valued mappings acting in a metric space $X$ and satisfying the Lipschitz condition, we propose a lower estimate of the distance from a given element $x_0\in X$ to a fixed point. Thus, we find $r>0$ such that there are no fixed points in the ball with center at $x_0$ of radius $r.$ The proof follows directly from the triangle inequality. The result is extended to $(q_1, q_2)$- metric spaces. An analogous estimate is obtained for coincidence points of covering and Lipschitz mappings of metric spaces.
Keywords: fixed point, point of coincidence, metric space, Banach theorem, Nadler’s theorem, lower estimate of the distance from a given element to a fixed point.
@article{VTAMU_2017_22_6_a4,
     author = {M. V. Borzova and E. S. Zhukovskiy and N. Yu. Chernikova},
     title = {One estimate of fixed points and coincidence points of mappings of metric spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {1255--1260},
     year = {2017},
     volume = {22},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a4/}
}
TY  - JOUR
AU  - M. V. Borzova
AU  - E. S. Zhukovskiy
AU  - N. Yu. Chernikova
TI  - One estimate of fixed points and coincidence points of mappings of metric spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 1255
EP  - 1260
VL  - 22
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a4/
LA  - ru
ID  - VTAMU_2017_22_6_a4
ER  - 
%0 Journal Article
%A M. V. Borzova
%A E. S. Zhukovskiy
%A N. Yu. Chernikova
%T One estimate of fixed points and coincidence points of mappings of metric spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 1255-1260
%V 22
%N 6
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a4/
%G ru
%F VTAMU_2017_22_6_a4
M. V. Borzova; E. S. Zhukovskiy; N. Yu. Chernikova. One estimate of fixed points and coincidence points of mappings of metric spaces. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1255-1260. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a4/