About existence and estimation of solution to one integral inclusion
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1247-1254
Voir la notice de l'article provenant de la source Math-Net.Ru
An inclusion with multi-valued mapping acting in spaces with vector-valued metrics is under discussion. It is shown that, if a multi-valued mapping $F$ can be written as $F(x)=\Upsilon(x,x),$ where the mapping $\Upsilon$ is closed and metrically regular with some operator coefficient $K$ with respect to one argument, Lipschitz with operator coefficient $Q$ with respect to the other argument, and the spectral radius of the operator $KQ$ is less than one, then the inclusion $F(x)\ni y$ is solvable. The estimations of the vector-valued distance from a solution $x$ of the inclusion to a given element $x_0$ are derived. In the second part of the paper, these results are used to investigate an integral inclusion of the implicit type with respect to the unknown integrable function.
Keywords:
space with vector-valued metric, multi-valued mapping, metrically regular mapping, implicit type integral inclusion.
@article{VTAMU_2017_22_6_a3,
author = {S. Benarab and W. Merchela and E. A. Panasenko},
title = {About existence and estimation of solution to one integral inclusion},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {1247--1254},
publisher = {mathdoc},
volume = {22},
number = {6},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a3/}
}
TY - JOUR AU - S. Benarab AU - W. Merchela AU - E. A. Panasenko TI - About existence and estimation of solution to one integral inclusion JO - Vestnik rossijskih universitetov. Matematika PY - 2017 SP - 1247 EP - 1254 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a3/ LA - ru ID - VTAMU_2017_22_6_a3 ER -
%0 Journal Article %A S. Benarab %A W. Merchela %A E. A. Panasenko %T About existence and estimation of solution to one integral inclusion %J Vestnik rossijskih universitetov. Matematika %D 2017 %P 1247-1254 %V 22 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a3/ %G ru %F VTAMU_2017_22_6_a3
S. Benarab; W. Merchela; E. A. Panasenko. About existence and estimation of solution to one integral inclusion. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1247-1254. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a3/