The existence and estimates of solutions of the Cauchy problem for a nonlinear functional-differential equation
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1329-1334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain an assertion about functional-differential inequality analogous to the well-known theorem of Chaplygin. The result can be used to find estimates of solutions of specific functional-differential equations.
Keywords: Cauchy problem, functional-differential equation, the Chaplygin theorem on differential inequality.
@article{VTAMU_2017_22_6_a16,
     author = {Kh. M. Takhir},
     title = {The existence and estimates of solutions of the {Cauchy} problem for a nonlinear functional-differential equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {1329--1334},
     year = {2017},
     volume = {22},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a16/}
}
TY  - JOUR
AU  - Kh. M. Takhir
TI  - The existence and estimates of solutions of the Cauchy problem for a nonlinear functional-differential equation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 1329
EP  - 1334
VL  - 22
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a16/
LA  - ru
ID  - VTAMU_2017_22_6_a16
ER  - 
%0 Journal Article
%A Kh. M. Takhir
%T The existence and estimates of solutions of the Cauchy problem for a nonlinear functional-differential equation
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 1329-1334
%V 22
%N 6
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a16/
%G ru
%F VTAMU_2017_22_6_a16
Kh. M. Takhir. The existence and estimates of solutions of the Cauchy problem for a nonlinear functional-differential equation. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1329-1334. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a16/

[1] M. A. Krasnoselsky, P. P. Zabreiko, Geometricheskie metody nelinejnogo analiza, Nauka, Moscow, 1975, 512 pp. (In Russian)

[2] N. V. Azbelev, V. P. Maksimov, L. F. Rahmatulina, Introduction to the Theory of Functional-Differential Equations, Nauka, Moscow, 1991, 280 pp. (In Russian)

[3] L. V. Kantorovich, G. P. Akilov, Funktsional'nyj Analiz, Nauka, Moscow, 1984, 752 pp. (In Russian) | MR

[4] E. S. Zhukovskii, “On the theory of Volterra equations”, Differ. Equ., 25:9 (1989), 1132–1137 | MR

[5] V. P. Maksimov, “The Cauchy formula for a functional-differential equation”, Differ. Uravn., 13:4 (1977), 601–606 (In Russian) | Zbl