The existence and estimates of solutions of the Cauchy problem for a nonlinear functional-differential equation
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1329-1334
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain an assertion about functional-differential inequality analogous to the well-known theorem of Chaplygin. The result can be used to find estimates of solutions of specific functional-differential equations.
Keywords:
Cauchy problem, functional-differential equation, the Chaplygin theorem on differential inequality.
@article{VTAMU_2017_22_6_a16,
author = {Kh. M. Takhir},
title = {The existence and estimates of solutions of the {Cauchy} problem for a nonlinear functional-differential equation},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {1329--1334},
year = {2017},
volume = {22},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a16/}
}
TY - JOUR AU - Kh. M. Takhir TI - The existence and estimates of solutions of the Cauchy problem for a nonlinear functional-differential equation JO - Vestnik rossijskih universitetov. Matematika PY - 2017 SP - 1329 EP - 1334 VL - 22 IS - 6 UR - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a16/ LA - ru ID - VTAMU_2017_22_6_a16 ER -
%0 Journal Article %A Kh. M. Takhir %T The existence and estimates of solutions of the Cauchy problem for a nonlinear functional-differential equation %J Vestnik rossijskih universitetov. Matematika %D 2017 %P 1329-1334 %V 22 %N 6 %U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a16/ %G ru %F VTAMU_2017_22_6_a16
Kh. M. Takhir. The existence and estimates of solutions of the Cauchy problem for a nonlinear functional-differential equation. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1329-1334. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a16/
[1] M. A. Krasnoselsky, P. P. Zabreiko, Geometricheskie metody nelinejnogo analiza, Nauka, Moscow, 1975, 512 pp. (In Russian)
[2] N. V. Azbelev, V. P. Maksimov, L. F. Rahmatulina, Introduction to the Theory of Functional-Differential Equations, Nauka, Moscow, 1991, 280 pp. (In Russian)
[3] L. V. Kantorovich, G. P. Akilov, Funktsional'nyj Analiz, Nauka, Moscow, 1984, 752 pp. (In Russian) | MR
[4] E. S. Zhukovskii, “On the theory of Volterra equations”, Differ. Equ., 25:9 (1989), 1132–1137 | MR
[5] V. P. Maksimov, “The Cauchy formula for a functional-differential equation”, Differ. Uravn., 13:4 (1977), 601–606 (In Russian) | Zbl