On fixed points of contraction mappings acting in generalized $(q_1,q_2)$-quasimetric spaces
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1325-1328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalized $(q_1,q_2)$-quasimetric spaces are considered. For contraction mappings in these spaces sufficient conditions for existence of fixed points are obtained.
Keywords: quasi-metric spaces, fixed points, contraction mappings.
@article{VTAMU_2017_22_6_a15,
     author = {R. Sengupta},
     title = {On fixed points of contraction mappings acting in generalized $(q_1,q_2)$-quasimetric spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {1325--1328},
     year = {2017},
     volume = {22},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a15/}
}
TY  - JOUR
AU  - R. Sengupta
TI  - On fixed points of contraction mappings acting in generalized $(q_1,q_2)$-quasimetric spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 1325
EP  - 1328
VL  - 22
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a15/
LA  - ru
ID  - VTAMU_2017_22_6_a15
ER  - 
%0 Journal Article
%A R. Sengupta
%T On fixed points of contraction mappings acting in generalized $(q_1,q_2)$-quasimetric spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 1325-1328
%V 22
%N 6
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a15/
%G ru
%F VTAMU_2017_22_6_a15
R. Sengupta. On fixed points of contraction mappings acting in generalized $(q_1,q_2)$-quasimetric spaces. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1325-1328. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a15/

[1] A. V. Arutyunov, A. V. Greshnov, “Theory of $(q_1, q_2)$-quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437 | DOI | MR | Zbl

[2] A. V. Arutyunov, S. E. Zhukovskiy, “Covering mappings and their applications”, Constructive Nonsmooth Analysis and Related Topics, Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V. F. Demyanov) (St. Petersburg, Russia, 22–27 May 2017), IEEE, 2017, 1–3

[3] A. V. Arutyunov, A. V. Greshnov, “$(q_1, q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izv. Math., 82:2 (2018), 245–272 | DOI | MR | Zbl