On fixed points of contraction mappings acting in generalized $(q_1,q_2)$-quasimetric spaces
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1325-1328
Cet article a éte moissonné depuis la source Math-Net.Ru
Generalized $(q_1,q_2)$-quasimetric spaces are considered. For contraction mappings in these spaces sufficient conditions for existence of fixed points are obtained.
Keywords:
quasi-metric spaces, fixed points, contraction mappings.
@article{VTAMU_2017_22_6_a15,
author = {R. Sengupta},
title = {On fixed points of contraction mappings acting in generalized $(q_1,q_2)$-quasimetric spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {1325--1328},
year = {2017},
volume = {22},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a15/}
}
TY - JOUR AU - R. Sengupta TI - On fixed points of contraction mappings acting in generalized $(q_1,q_2)$-quasimetric spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2017 SP - 1325 EP - 1328 VL - 22 IS - 6 UR - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a15/ LA - ru ID - VTAMU_2017_22_6_a15 ER -
R. Sengupta. On fixed points of contraction mappings acting in generalized $(q_1,q_2)$-quasimetric spaces. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1325-1328. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a15/
[1] A. V. Arutyunov, A. V. Greshnov, “Theory of $(q_1, q_2)$-quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437 | DOI | MR | Zbl
[2] A. V. Arutyunov, S. E. Zhukovskiy, “Covering mappings and their applications”, Constructive Nonsmooth Analysis and Related Topics, Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V. F. Demyanov) (St. Petersburg, Russia, 22–27 May 2017), IEEE, 2017, 1–3
[3] A. V. Arutyunov, A. V. Greshnov, “$(q_1, q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izv. Math., 82:2 (2018), 245–272 | DOI | MR | Zbl