On one method of studying implicit singular differential inclusions
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1314-1320
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We propose a method of studying singular  differential inclusions based on the representation of such an inclusion in the form of an operator inclusion in some space of measurable functions depending on the type of a given singularity. To the operator inclusion we apply the results on Lipschitz perturbations of multi-valued covering mappings.
   The article consists of three sections. In the first one we give the necessary definitions and formulate the theorem [A. Arutyunov, V.A. de Oliveira, F.L. Pereira,
 E. Zhukovskiy, S. Zhukovskiy // Applicable Analysis, 2015, 94, № 1] on the  Lipschitz perturbations of  multi-valued covering mappings. In the second section we introduce special metric spaces of integrable functions and obtain sufficient conditions of covering for the multi-valued Nemytskii operator in such spaces. Finally, using the mentioned results, we derive the existence conditions for the Cauchy problem for an implicit singular differential inclusion.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
implicit singular differential inclusion, Cauchy problem, covering multi-valued mapping, Lipschitz multi-valued mapping.
Mots-clés : existence of solution
                    
                  
                
                
                Mots-clés : existence of solution
@article{VTAMU_2017_22_6_a13,
     author = {E. A. Pluzhnikova and A. I. Shindyapin},
     title = {On one method of studying implicit singular differential inclusions},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {1314--1320},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a13/}
}
                      
                      
                    TY - JOUR AU - E. A. Pluzhnikova AU - A. I. Shindyapin TI - On one method of studying implicit singular differential inclusions JO - Vestnik rossijskih universitetov. Matematika PY - 2017 SP - 1314 EP - 1320 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a13/ LA - ru ID - VTAMU_2017_22_6_a13 ER -
%0 Journal Article %A E. A. Pluzhnikova %A A. I. Shindyapin %T On one method of studying implicit singular differential inclusions %J Vestnik rossijskih universitetov. Matematika %D 2017 %P 1314-1320 %V 22 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a13/ %G ru %F VTAMU_2017_22_6_a13
E. A. Pluzhnikova; A. I. Shindyapin. On one method of studying implicit singular differential inclusions. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1314-1320. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a13/
