On the application of the results of covering mappings theory for the study of dynamical models of economic processes
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1304-1308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is a study of the existence of equilibruim points in the dynamic Walrasian-Evans-Samuelson model. Sufficient conditions for the existence of the vector-function of equilibruim prices are derived from the existence theorems for coincidence points of Lipschitz continuous and covering mappings.
Mots-clés : economical equalibruim
Keywords: coincidence points, covering mappings.
@article{VTAMU_2017_22_6_a11,
     author = {N. G. Pavlova},
     title = {On the application of the results of covering mappings theory for the study of dynamical models of economic processes},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {1304--1308},
     year = {2017},
     volume = {22},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a11/}
}
TY  - JOUR
AU  - N. G. Pavlova
TI  - On the application of the results of covering mappings theory for the study of dynamical models of economic processes
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 1304
EP  - 1308
VL  - 22
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a11/
LA  - ru
ID  - VTAMU_2017_22_6_a11
ER  - 
%0 Journal Article
%A N. G. Pavlova
%T On the application of the results of covering mappings theory for the study of dynamical models of economic processes
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 1304-1308
%V 22
%N 6
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a11/
%G ru
%F VTAMU_2017_22_6_a11
N. G. Pavlova. On the application of the results of covering mappings theory for the study of dynamical models of economic processes. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1304-1308. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a11/

[1] A. V. Arutyunov, S. E. Zhukovskiy, N. G. Pavlova, “Equilibrium price as a coincidence point of two mappings”, Computational Mathematics and Mathematical Physics, 53:2 (2013), 158–169 | DOI | MR | Zbl

[2] S. E. Zhukovskiy, N. G. Pavlova, “On the application of covering mapping theory to nonlinear market models”, Tambov University Reports. Series: Natural and Technical Sciences, 18:1 (2013), 47–48 (In Russian)

[3] N. G. Pavlova, “O primenenii teorii nakryvayushchih otobrazheniy k issledovaniyu ehkonomiko-matematicheskih modeley”, Trudy Matematicheskogo tsentra im. N.I. Lobachevskogo, 54 (2017), 287–290

[4] G. C. Evans, Mathematical Introduction to Economics, McGraw-Hill, New York, 1930

[5] R. Allen, Matematicheskaya ehkonomiya, Izd-vo Inostrannoy lit-ry, Moscow, 1963 (In Russian)

[6] A. V. Arutyunov, “Coincidence Points of Two Maps”, Funct. Anal. Appl., 48:1 (2014), 72–75 | DOI | MR | Zbl

[7] A. Arutyunov, E. Avakov, B. Gel'man, A. Dmitruk, V. Obukhovskii, “Locally covering maps in metric spaces and coincidence points”, J. Fixed Points Theory and Applications, 5:1 (2009), 5–16 | MR

[8] E. R. Avakov, A. V. Arutyunov, E. S. Zhukovskii, “Covering mappings and their applications to differential equations unsolved for the derivative”, Differential Equations, 45:5 (2009), 627–649 | DOI | MR | Zbl