On positivity of the Green function for Poisson problem for a linear functional differential equation
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1229-1234

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Poisson problem \begin{equation*} -\Delta u + p(x)u - \int\limits_\Omega u(s)\,r(x,ds) = \rho f, \quad u\big|_{\Gamma(\Omega)} =0 \end{equation*} equivalence of positivity of the Green function and other classical properties is showed. Here $\Omega$ is an open set in $\mathbb{R}^n$, and $\Gamma(\Omega)$ is the boundary of the $\Omega$. For almost all $x\in\Omega$, $r(x,\cdot)$ is a measure satisfying certain symmetry condition. In particular this equation involves integral differential equation and the equation $$ -\Delta u + p(x)u(x) - \sum_{i=1}^{m}p_i(x)u(h_i(x)) = \rho f, $$ where $h_i\colon \Omega\to\Omega$ is a measurable mapping.
Keywords: Green function, Vallee-Poussin theorem, Spectrum of selfadjoint operator.
Mots-clés : Poisson problem
@article{VTAMU_2017_22_6_a1,
     author = {S. M. Labovski},
     title = {On positivity of the {Green} function for {Poisson} problem for a linear functional differential equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {1229--1234},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/}
}
TY  - JOUR
AU  - S. M. Labovski
TI  - On positivity of the Green function for Poisson problem for a linear functional differential equation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 1229
EP  - 1234
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/
LA  - en
ID  - VTAMU_2017_22_6_a1
ER  - 
%0 Journal Article
%A S. M. Labovski
%T On positivity of the Green function for Poisson problem for a linear functional differential equation
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 1229-1234
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/
%G en
%F VTAMU_2017_22_6_a1
S. M. Labovski. On positivity of the Green function for Poisson problem for a linear functional differential equation. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1229-1234. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/