On positivity of the Green function for Poisson problem for a linear functional differential equation
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1229-1234
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the Poisson problem
\begin{equation*}
  -\Delta u + p(x)u - \int\limits_\Omega u(s)\,r(x,ds) = \rho f, \quad
   u\big|_{\Gamma(\Omega)} =0
\end{equation*}
equivalence of positivity of the Green function and other classical properties is showed. Here $\Omega$ is an open set in $\mathbb{R}^n$, and $\Gamma(\Omega)$ is
the boundary of the $\Omega$. For almost all $x\in\Omega$, $r(x,\cdot)$ is a measure
satisfying certain symmetry condition. In particular this equation involves integral differential equation and the equation
$$
    -\Delta u + p(x)u(x) - \sum_{i=1}^{m}p_i(x)u(h_i(x)) = \rho f,
$$
where $h_i\colon \Omega\to\Omega$ is a measurable mapping.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Green function, Vallee-Poussin theorem, Spectrum of selfadjoint operator.
Mots-clés : Poisson problem
                    
                  
                
                
                Mots-clés : Poisson problem
@article{VTAMU_2017_22_6_a1,
     author = {S. M. Labovski},
     title = {On positivity of the {Green} function for {Poisson} problem for a linear functional differential equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {1229--1234},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/}
}
                      
                      
                    TY - JOUR AU - S. M. Labovski TI - On positivity of the Green function for Poisson problem for a linear functional differential equation JO - Vestnik rossijskih universitetov. Matematika PY - 2017 SP - 1229 EP - 1234 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/ LA - en ID - VTAMU_2017_22_6_a1 ER -
%0 Journal Article %A S. M. Labovski %T On positivity of the Green function for Poisson problem for a linear functional differential equation %J Vestnik rossijskih universitetov. Matematika %D 2017 %P 1229-1234 %V 22 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/ %G en %F VTAMU_2017_22_6_a1
S. M. Labovski. On positivity of the Green function for Poisson problem for a linear functional differential equation. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1229-1234. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/
