On positivity of the Green function for Poisson problem for a linear functional differential equation
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1229-1234
Cet article a éte moissonné depuis la source Math-Net.Ru
For the Poisson problem \begin{equation*} -\Delta u + p(x)u - \int\limits_\Omega u(s)\,r(x,ds) = \rho f, \quad u\big|_{\Gamma(\Omega)} =0 \end{equation*} equivalence of positivity of the Green function and other classical properties is showed. Here $\Omega$ is an open set in $\mathbb{R}^n$, and $\Gamma(\Omega)$ is the boundary of the $\Omega$. For almost all $x\in\Omega$, $r(x,\cdot)$ is a measure satisfying certain symmetry condition. In particular this equation involves integral differential equation and the equation $$ -\Delta u + p(x)u(x) - \sum_{i=1}^{m}p_i(x)u(h_i(x)) = \rho f, $$ where $h_i\colon \Omega\to\Omega$ is a measurable mapping.
Keywords:
Green function, Vallee-Poussin theorem, Spectrum of selfadjoint operator.
Mots-clés : Poisson problem
Mots-clés : Poisson problem
@article{VTAMU_2017_22_6_a1,
author = {S. M. Labovski},
title = {On positivity of the {Green} function for {Poisson} problem for a linear functional differential equation},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {1229--1234},
year = {2017},
volume = {22},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/}
}
TY - JOUR AU - S. M. Labovski TI - On positivity of the Green function for Poisson problem for a linear functional differential equation JO - Vestnik rossijskih universitetov. Matematika PY - 2017 SP - 1229 EP - 1234 VL - 22 IS - 6 UR - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/ LA - en ID - VTAMU_2017_22_6_a1 ER -
%0 Journal Article %A S. M. Labovski %T On positivity of the Green function for Poisson problem for a linear functional differential equation %J Vestnik rossijskih universitetov. Matematika %D 2017 %P 1229-1234 %V 22 %N 6 %U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/ %G en %F VTAMU_2017_22_6_a1
S. M. Labovski. On positivity of the Green function for Poisson problem for a linear functional differential equation. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1229-1234. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a1/