@article{VTAMU_2017_22_3_a9,
author = {I. D. Serova},
title = {About implicit differential inequalities with deviating argument},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {571--578},
year = {2017},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a9/}
}
I. D. Serova. About implicit differential inequalities with deviating argument. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 571-578. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a9/
[1] S. A. Chaplygin, “Osnovaniya novogo sposoba priblizhyonnogo integrirovaniya differencial’nyh uravnenij”, Sobranie Sochinenij, v. I, Gostekhizdat, Moscow, 1948, 348–368 (In Russian) | MR
[2] Izbrannye Trudy N. V. Azbeleva, eds. V. P. Maksimov, L. F. Rahmatullina, Institut komp’yuternyh issledovaniy, Moscow; Izhevsk, 2012, 808 pp. (In Russian)
[3] A. I. Bulgakov, “On the oscillation of solutions of systems of second-order differential equations”, Differ. Uravn., 23:2 (1987), 204–217 (In Russian) | MR | Zbl
[4] V. B. Penkov, T. V. Zhukovskaja, L. V. Satalkina, “About solvability and solutions estimates for differential equation with delay depending on required function”, Tambov University Review. Series: Natural and Technical Sciences, 16:3 (2011), 748–751 (In Russian)
[5] E. S. Zhukovskii, “Integral inequalities in spaces of summable functions”, Differ. Uravn., 18:4 (1982), 580–584 (In Russian) | MR
[6] E. S. Zhukovskii, “Neravenstva Volterra v funktsionalnykh prostranstvakh”, Matematicheskii sbornik, 195:9 (2004), 3–18 | MR
[7] E. S. Zhukovskii, “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i neyavnykh differentsialnykh neravenstvakh”, Differentsialnye uravneniya, 52:12 (2016), 1605–1621
[8] T. V. Zhukovskaya, I. A. Zabrodskiy, I. D. Serova, “On functional inequalities”, Tambov University Review. Series: Natural and Technical Sciences, 21:6 (2016), 1963–1968 (In Russian)
[9] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33 | DOI | MR | Zbl
[10] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Applications, 201 (2016), 330–343 | DOI | MR | Zbl
[11] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O tochkakh sovpadeniya otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Doklady Akademii nauk, 453:5 (2013), 475–478 | Zbl
[12] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “Tochki sovpadeniya mnogoznachnykh otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Doklady akademii nauk, 453:6 (2013), 595–598 | Zbl
[13] L. Kollatc, Funkcionalnii Analiz i Vichislitelnaya Matematika, Mir, Moscow, 1969, 448 pp. (In Russian)
[14] A. N. Kolmogorov, S. V. Fomin, Elementi Teorii Funkcii i Funkcionalnogo Analiza, Nauka, Moscow, 1981, 544 pp. (In Russian) | MR
[15] Yu. G. Borisovich, B. D. Gelman, A. D. Mishkis, V. V. Obuhovskii, Vvedenie v Teoriyu Mnogoznachnih Otobrajenii i Differencialnih Vklyuchenii, LIBROKOM, Moscow, 2011, 224 pp. (In Russian) | MR
[16] N. Danford, Dj. Shvarc, Lineinie Operatori, v. 1, Obschaya Teoriya, IL, M., 1962, 896 pp. (In Russian)