About implicit differential inequalities with deviating argument
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 571-578 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Assertion about existence and evaluation of solutions to equations $\Upsilon (x,x)=y,$ where the mapping $\Upsilon$ acting in partially ordered spaces is covering by the first argument and antitone by the second argument is derived. This result is used for the proof of the Chaplygin's type theorem on differential inequality with deviating argument.
Keywords: orderly covering mappings, differential equation with deviating argument, the Сauchy problem, Chaplygin’s type inequality.
@article{VTAMU_2017_22_3_a9,
     author = {I. D. Serova},
     title = {About implicit differential inequalities with deviating argument},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {571--578},
     year = {2017},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a9/}
}
TY  - JOUR
AU  - I. D. Serova
TI  - About implicit differential inequalities with deviating argument
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 571
EP  - 578
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a9/
LA  - ru
ID  - VTAMU_2017_22_3_a9
ER  - 
%0 Journal Article
%A I. D. Serova
%T About implicit differential inequalities with deviating argument
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 571-578
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a9/
%G ru
%F VTAMU_2017_22_3_a9
I. D. Serova. About implicit differential inequalities with deviating argument. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 571-578. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a9/

[1] S. A. Chaplygin, “Osnovaniya novogo sposoba priblizhyonnogo integrirovaniya differencial’nyh uravnenij”, Sobranie Sochinenij, v. I, Gostekhizdat, Moscow, 1948, 348–368 (In Russian) | MR

[2] Izbrannye Trudy N. V. Azbeleva, eds. V. P. Maksimov, L. F. Rahmatullina, Institut komp’yuternyh issledovaniy, Moscow; Izhevsk, 2012, 808 pp. (In Russian)

[3] A. I. Bulgakov, “On the oscillation of solutions of systems of second-order differential equations”, Differ. Uravn., 23:2 (1987), 204–217 (In Russian) | MR | Zbl

[4] V. B. Penkov, T. V. Zhukovskaja, L. V. Satalkina, “About solvability and solutions estimates for differential equation with delay depending on required function”, Tambov University Review. Series: Natural and Technical Sciences, 16:3 (2011), 748–751 (In Russian)

[5] E. S. Zhukovskii, “Integral inequalities in spaces of summable functions”, Differ. Uravn., 18:4 (1982), 580–584 (In Russian) | MR

[6] E. S. Zhukovskii, “Neravenstva Volterra v funktsionalnykh prostranstvakh”, Matematicheskii sbornik, 195:9 (2004), 3–18 | MR

[7] E. S. Zhukovskii, “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i neyavnykh differentsialnykh neravenstvakh”, Differentsialnye uravneniya, 52:12 (2016), 1605–1621

[8] T. V. Zhukovskaya, I. A. Zabrodskiy, I. D. Serova, “On functional inequalities”, Tambov University Review. Series: Natural and Technical Sciences, 21:6 (2016), 1963–1968 (In Russian)

[9] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33 | DOI | MR | Zbl

[10] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Applications, 201 (2016), 330–343 | DOI | MR | Zbl

[11] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O tochkakh sovpadeniya otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Doklady Akademii nauk, 453:5 (2013), 475–478 | Zbl

[12] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “Tochki sovpadeniya mnogoznachnykh otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Doklady akademii nauk, 453:6 (2013), 595–598 | Zbl

[13] L. Kollatc, Funkcionalnii Analiz i Vichislitelnaya Matematika, Mir, Moscow, 1969, 448 pp. (In Russian)

[14] A. N. Kolmogorov, S. V. Fomin, Elementi Teorii Funkcii i Funkcionalnogo Analiza, Nauka, Moscow, 1981, 544 pp. (In Russian) | MR

[15] Yu. G. Borisovich, B. D. Gelman, A. D. Mishkis, V. V. Obuhovskii, Vvedenie v Teoriyu Mnogoznachnih Otobrajenii i Differencialnih Vklyuchenii, LIBROKOM, Moscow, 2011, 224 pp. (In Russian) | MR

[16] N. Danford, Dj. Shvarc, Lineinie Operatori, v. 1, Obschaya Teoriya, IL, M., 1962, 896 pp. (In Russian)