Mots-clés : Wijsman convergence
@article{VTAMU_2017_22_3_a8,
author = {E. A. Panasenko},
title = {On convergence in the space of closed subsets of a metric space},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {565--570},
year = {2017},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a8/}
}
E. A. Panasenko. On convergence in the space of closed subsets of a metric space. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 565-570. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a8/
[1] A. Lechicki, S. Levi, “Wijsman convergence in the hyperspace of a metric space”, Bollettino U.M.I., 7 (1987), 439–451 | MR
[2] S. Francaviglia, A. Lechicki, S. Levi, “Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions”, J. Math. Anal. Appl., 112:2 (1985), 347–370 | DOI | MR | Zbl
[3] R. A. Wijsman, “Convergence of sequences of convex sets, cones and functions. II.”, Trans. Amer. Math. Soc., 123 (1966), 32–45 | DOI | MR | Zbl
[4] G. Beer, “Metric spaces with nice closed balls and distance functions for closed sets”, Bull. Austral. Math. Soc., 35 (1987), 81–96 | DOI | MR | Zbl
[5] E. S. Zhukovskiy, E. A. Panasenko, “On multi-valued maps with images in the space of closed subsets of a metric space”, Fixed Point Theory and Applications, 2013:10 (2013), 1–21 | DOI | MR
[6] E. S. Zhukovskiy, E. A. Panasenko, “Definition of the metric on the space ${\rm clos}_{\varnothing}(X)$ of closed subsets of a metric space $X$ and properties of mappings with values in ${\rm clos}_{\varnothing}({\mathbb R}^n)$”, Sb. Math., 205:9 (2014), 1279–1309 | DOI | MR | Zbl