On convergence in the space of closed subsets of a metric space
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 565-570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the space ${\rm clos}(X)$ of closed subsets of unbounded (not necessarily separable) metric space $(X, \varrho_{_X})$ endowed with the metric $\rho_{_X}^{\rm cl}$ introduced in [Zhukovskiy E.S., Panasenko E.A. // Fixed Point Theory and Applications. 2013:10]. It is shown that if any closed ball in the space $(X, \varrho_{_X})$ is totaly bounded, then convergence in the space $\left({\rm clos}(X), \rho_{_X}^{\rm cl}\right)$ of a sequence $\{F_i\}_{i=1}^\infty$ to $F$ is equivalent to convergence in the sense of Wijsman, that is to convergence for each $x \in X$ of the distances $\varrho_{_X}(x, F_i)$ to $\varrho_{_X}(x, F).$
Keywords: space of closed subsets of a metric space, metrizability.
Mots-clés : Wijsman convergence
@article{VTAMU_2017_22_3_a8,
     author = {E. A. Panasenko},
     title = {On convergence in the space of closed subsets of a metric space},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {565--570},
     year = {2017},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a8/}
}
TY  - JOUR
AU  - E. A. Panasenko
TI  - On convergence in the space of closed subsets of a metric space
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 565
EP  - 570
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a8/
LA  - ru
ID  - VTAMU_2017_22_3_a8
ER  - 
%0 Journal Article
%A E. A. Panasenko
%T On convergence in the space of closed subsets of a metric space
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 565-570
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a8/
%G ru
%F VTAMU_2017_22_3_a8
E. A. Panasenko. On convergence in the space of closed subsets of a metric space. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 565-570. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a8/

[1] A. Lechicki, S. Levi, “Wijsman convergence in the hyperspace of a metric space”, Bollettino U.M.I., 7 (1987), 439–451 | MR

[2] S. Francaviglia, A. Lechicki, S. Levi, “Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions”, J. Math. Anal. Appl., 112:2 (1985), 347–370 | DOI | MR | Zbl

[3] R. A. Wijsman, “Convergence of sequences of convex sets, cones and functions. II.”, Trans. Amer. Math. Soc., 123 (1966), 32–45 | DOI | MR | Zbl

[4] G. Beer, “Metric spaces with nice closed balls and distance functions for closed sets”, Bull. Austral. Math. Soc., 35 (1987), 81–96 | DOI | MR | Zbl

[5] E. S. Zhukovskiy, E. A. Panasenko, “On multi-valued maps with images in the space of closed subsets of a metric space”, Fixed Point Theory and Applications, 2013:10 (2013), 1–21 | DOI | MR

[6] E. S. Zhukovskiy, E. A. Panasenko, “Definition of the metric on the space ${\rm clos}_{\varnothing}(X)$ of closed subsets of a metric space $X$ and properties of mappings with values in ${\rm clos}_{\varnothing}({\mathbb R}^n)$”, Sb. Math., 205:9 (2014), 1279–1309 | DOI | MR | Zbl