On convergence in the space of closed subsets of a metric space
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 565-570
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the space
${\rm clos}(X)$ of closed subsets of unbounded (not necessarily
separable) metric space $(X, \varrho_{_X})$ endowed with the metric
$\rho_{_X}^{\rm cl}$ introduced in [Zhukovskiy E.S., Panasenko E.A. //
Fixed Point Theory and Applications. 2013:10]. It is shown that if any closed
ball in the space $(X, \varrho_{_X})$ is totaly bounded, then convergence in the space
$\left({\rm clos}(X), \rho_{_X}^{\rm cl}\right)$ of a sequence $\{F_i\}_{i=1}^\infty$ to $F$ is equivalent to convergence in the sense of
Wijsman, that is to convergence for each $x \in X$ of the distances
$\varrho_{_X}(x, F_i)$ to $\varrho_{_X}(x, F).$
Keywords:
space of closed subsets of a metric space, metrizability.
Mots-clés : Wijsman convergence
Mots-clés : Wijsman convergence
@article{VTAMU_2017_22_3_a8,
author = {E. A. Panasenko},
title = {On convergence in the space of closed subsets of a metric space},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {565--570},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a8/}
}
E. A. Panasenko. On convergence in the space of closed subsets of a metric space. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 565-570. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a8/