Singularities of geodesic flows and lines in pseudo-Finsler spaces. III
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 539-551 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a third paper in the series devoted to singularities of geodesic flows in generalized Finsler (pseudo-Finsler) spaces. In two previous papers, we defined geodesics as extremals of a certain auxiliary functional whose non-isotropic extremals coincide with extremals of the action functional, and studied generic singularities of so-defined geodesic flows in the case the pseudo-Finsler metric is given by a generic form of degree 3 on a two-dimensional manifold. In the present paper, we consider an important non-generic case: singularities of geodesic flows on two-dimensional surfaces embedded into the Berwald-Moor space of arbitrary dimension.
Mots-clés : Pseudo-Finsler spaces
Keywords: Berwald-Moor metric, geodesics, singular points, resonances, normal forms.
@article{VTAMU_2017_22_3_a5,
     author = {A. N. Kurbatskii and N. G. Pavlova and A. O. Remizov},
     title = {Singularities of geodesic flows and lines in {pseudo-Finsler} spaces. {III}},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {539--551},
     year = {2017},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a5/}
}
TY  - JOUR
AU  - A. N. Kurbatskii
AU  - N. G. Pavlova
AU  - A. O. Remizov
TI  - Singularities of geodesic flows and lines in pseudo-Finsler spaces. III
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 539
EP  - 551
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a5/
LA  - ru
ID  - VTAMU_2017_22_3_a5
ER  - 
%0 Journal Article
%A A. N. Kurbatskii
%A N. G. Pavlova
%A A. O. Remizov
%T Singularities of geodesic flows and lines in pseudo-Finsler spaces. III
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 539-551
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a5/
%G ru
%F VTAMU_2017_22_3_a5
A. N. Kurbatskii; N. G. Pavlova; A. O. Remizov. Singularities of geodesic flows and lines in pseudo-Finsler spaces. III. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 539-551. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a5/

[1] A. N. Kurbatskiy, N. G. Pavlova, A. O. Remizov, “Singularities of geodesic flows and geodesic lines in pseudo-finsler spaces. I”, Tambov University Reports. Series: Natural and Technical Sciences, 21:1 (2016), 66–75 (In Russian) | MR

[2] A. N. Kurbatskiy, N. G. Pavlova, A. O. Remizov, “Singularities of geodesic flows and geodesic lines in pseudo-finsler spaces. II”, Tambov University Reports. Series: Natural and Technical Sciences, 21:6 (2016), 2005–2018 (In Russian)

[3] H. Rund, Differentsial'naya Geometriya Finslerovyh Prostranstv, Nauka, Moscow, 1981 (In Russian)

[4] V. Balan, M. Neagu, Jet Single-Time Lagrange Geometry and its Applications, John Wiley Sons, Inc., Hoboken, New Jersey, 2011 | MR

[5] M. Matsumoto, “Two-dimensional Finsler spaces whose geodesics constitute a family of special conic sections”, J. Math. Kyoto Univ, 32:3 (1995), 357–376 | DOI | MR

[6] M. Matsumoto, H. Shimada, “On Finsler spaces with 1-form metric. II. Berwald-Moor's metric $L = (y^1y^2 \cdots y^n)^{1/n}$”, Tensor (N.S.), 32:3 (1978), 275–278 | MR | Zbl

[7] V. I. Arnol'd, Yu. S. Ilyashenko, “Ordinary differential equations”, Encyclopaedia Math. Sci., 1 (1988), 1–148 | MR | Zbl

[8] M. W. Hirsch, C. C. Pugh, M. Shub, Invariant Manifolds, v. 583, Lecture Notes in Mathematics, Springer–Verlag, Berlin–New York, 1977 | DOI | MR | Zbl

[9] R. Ghezzi, A. O. Remizov, “On a class of vector fields with discontinuities of divide-by-zero type and its applications to geodesics in singular metrics”, Journal of Dynamical and Control Systems, 18:1 (2012), 135–158 | DOI | MR | Zbl

[10] R. Roussarie, Modèles Locaux de Champs et de Formes, Astérisque, 30, Société Mathématique de France, Paris, 1975, 181 pp. | MR

[11] A. O. Remizov, “Many-Dimensional Poincaré Construction and Singularities of Lifted Fields For Implicit Differential Equations”, Journal of Mathematical Sciences, 151:6 (2008), 3561–3602 | DOI | MR | Zbl

[12] S. M. Voronin, “Analiticheskaya klassifikatsiya rostkov golomorfnyh otobrazheniy s neizolirovannymi nepodvizhnymi tochkami i postoyannymi mul'tiplikatorami i ee prilozheniya”, Vestnik Chelyabinsk. Gos. Univ., 1999, no. 5, 12–30 (In Russian)