On quadratic mappings properties and conditions for inverse functions existence
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 533-538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some properties of quadratic mappings are studied It is proved that if a quadratic mapping have no nontrivial zeroes then it has nontrivial fixed points. Sufficient conditions for inverse function existence are obtained for smooth mappings in the case when the first derivative vanishes.
Keywords: quadratic mapping, fixed point, inverse function.
@article{VTAMU_2017_22_3_a4,
     author = {S. E. Zhukovskiy and Chan Thi Ngok and L.-E. I. Ngomirakiza},
     title = {On quadratic mappings properties and conditions for inverse functions existence},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {533--538},
     year = {2017},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a4/}
}
TY  - JOUR
AU  - S. E. Zhukovskiy
AU  - Chan Thi Ngok
AU  - L.-E. I. Ngomirakiza
TI  - On quadratic mappings properties and conditions for inverse functions existence
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 533
EP  - 538
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a4/
LA  - ru
ID  - VTAMU_2017_22_3_a4
ER  - 
%0 Journal Article
%A S. E. Zhukovskiy
%A Chan Thi Ngok
%A L.-E. I. Ngomirakiza
%T On quadratic mappings properties and conditions for inverse functions existence
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 533-538
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a4/
%G ru
%F VTAMU_2017_22_3_a4
S. E. Zhukovskiy; Chan Thi Ngok; L.-E. I. Ngomirakiza. On quadratic mappings properties and conditions for inverse functions existence. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 533-538. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a4/

[1] A. V. Arutyunov, “Smooth abnormal problems in extremum theory and analysis”, Russian Mathematical Surveys, 67:3 (2012), 403–457 | DOI | MR | Zbl

[2] A. V. Arutyunov, G. G. Magaril-Ilyayev, V. M. Tikhomirov, Pontryagin's Maximum Principle, Factorial-Press, Moscow, 2006 (In Russian) | MR

[3] E. R. Avakov, A. V. Arutyunov, “Inverse function theorem and conditions of extremum for abnormal problems with non-closed range”, Sb. Math, 196:9 (2005), 1251–1269 | DOI | MR | Zbl

[4] J. W. Milnor, A. H. Wallace, Differential Topology. Basic course, Mir, Moscow, 1972 (In Russian) | MR

[5] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Gosudarstvennoe izdatel'stvo tekniko-teoreticheskoy literaturi, Mosocow, 1956 (In Russian)