About the solvability of the Cauchy problem for nonlinear functional differential equations
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 523-532 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for a nonlinear functional-differential equation of general type with Volterra mappings is considered. Conditions of existence of a unique global solution and conditions of existence of a unique limitary prolonged solution are derived. The reduction to an operator equation with the Volterra operator in the space of continuous functions is used.
Keywords: the Volterra operator, nonlinear functional-differential equation, the Cauchy problem
Mots-clés : existence of solution.
@article{VTAMU_2017_22_3_a3,
     author = {T. V. Zhukovskaya and E. S. Zhukovskiy and Kh. M. Takhir},
     title = {About the solvability of the {Cauchy} problem for nonlinear functional differential equations},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {523--532},
     year = {2017},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a3/}
}
TY  - JOUR
AU  - T. V. Zhukovskaya
AU  - E. S. Zhukovskiy
AU  - Kh. M. Takhir
TI  - About the solvability of the Cauchy problem for nonlinear functional differential equations
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 523
EP  - 532
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a3/
LA  - ru
ID  - VTAMU_2017_22_3_a3
ER  - 
%0 Journal Article
%A T. V. Zhukovskaya
%A E. S. Zhukovskiy
%A Kh. M. Takhir
%T About the solvability of the Cauchy problem for nonlinear functional differential equations
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 523-532
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a3/
%G ru
%F VTAMU_2017_22_3_a3
T. V. Zhukovskaya; E. S. Zhukovskiy; Kh. M. Takhir. About the solvability of the Cauchy problem for nonlinear functional differential equations. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 523-532. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a3/

[1] N. V. Azbelev, V. P. Maksimov, L. F. Rahmatullina, Vvedenie v Teoriyu Funktsional'no-Differentsial'nyh Uravnenij, Nauka, Moscow, 1991, 280 pp. (In Russian) | MR

[2] N. V. Azbelev, V. P. Maksimov, L. F. Rahmatullina, Elementy Sovremennoj Teorii Funktsional'no-Differentsial'nyh Uravnenij. Metody i Prilozheniya, Nauka, Moscow, 2002, 384 pp. (In Russian) | MR

[3] E. S. Zhukovskii, “Continuous dependence on parameters of solutions to Volterra's equations”, Sb. Math., 197:10 (2006), 1435–1457 | DOI | MR | Zbl

[4] E. O. Burlakov, E. S. Zhukovskii, “The continuous dependence of solutions to Volterra equations with locally contracting operators on parameters”, Russian Math. (Iz. VUZ), 54:8 (2010), 12–23 | DOI | MR | Zbl

[5] L. V. Kantorovich, G. P. Akilov, Funktsional'nyj Analiz, Nauka, Moscow, 1984, 752 pp. (In Russian) | MR

[6] L. V. Kantorovich, B. Z. Vulih, A. G. Pinsker, Funktsional'nyj Analiz v Poluuporyadochennyh Prostranstvah, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoj literatury, Moscow–Leningrad, 1950, 548 pp. (In Russian) | MR

[7] E. S. Zhukovskii, “On the theory of Volterra equations”, Differ. Equ., 25:9 (1989), 1132–1137 | MR

[8] V. P. Maksimov, “The Cauchy formula for a functional-differential equation”, Differ. Uravn., 13:4 (1977), 601–606 (In Russian) | MR | Zbl

[9] E. S. Zhukovskii, “The Volterra property and spectral properties of an inner superposition operator”, Differ. Equ., 30:2 (1994), 229–234 | MR

[10] E. S. Zhukovskii, “A nonlinear Volterra equation in a Banach function space”, Russian Math. (Iz. VUZ), 49:10 (2005), 14–24 | MR | Zbl

[11] I. P. Natanson, Teoriya Funktsij Veshchestvennoj Peremennoj, Nauka, Moscow, 1974, 480 pp. (In Russian) | MR

[12] H. M. T. Tahir, “On solving linear functional-differential equations”, Tambov University Reports. Series: Natural and Technical Sciences, 21:2 (2016), 417–431 (In Russian)

[13] E. S. Zhukovskii, H. M. T. Tahir, “O neotritsatel'nosti funktsii Koshi differentsial'nogo uravneniya s postoyannym zapazdyvaniem”, Sovremennye metody prikladnoj matematiki, teorii upravleniya i komp'yuternyh tekhnologij (PMTUKT-2016), IX Mezhdunarodnaya konferenciya, Sbornik trudov (Voronezh, 20–26 Sentyabrya 2016), Izdatel'stvo «Nauchnaya kniga», Voronezh, 2016, 154–158 (In Russian)