Mots-clés : existence of solution.
@article{VTAMU_2017_22_3_a3,
author = {T. V. Zhukovskaya and E. S. Zhukovskiy and Kh. M. Takhir},
title = {About the solvability of the {Cauchy} problem for nonlinear functional differential equations},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {523--532},
year = {2017},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a3/}
}
TY - JOUR AU - T. V. Zhukovskaya AU - E. S. Zhukovskiy AU - Kh. M. Takhir TI - About the solvability of the Cauchy problem for nonlinear functional differential equations JO - Vestnik rossijskih universitetov. Matematika PY - 2017 SP - 523 EP - 532 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a3/ LA - ru ID - VTAMU_2017_22_3_a3 ER -
%0 Journal Article %A T. V. Zhukovskaya %A E. S. Zhukovskiy %A Kh. M. Takhir %T About the solvability of the Cauchy problem for nonlinear functional differential equations %J Vestnik rossijskih universitetov. Matematika %D 2017 %P 523-532 %V 22 %N 3 %U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a3/ %G ru %F VTAMU_2017_22_3_a3
T. V. Zhukovskaya; E. S. Zhukovskiy; Kh. M. Takhir. About the solvability of the Cauchy problem for nonlinear functional differential equations. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 523-532. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a3/
[1] N. V. Azbelev, V. P. Maksimov, L. F. Rahmatullina, Vvedenie v Teoriyu Funktsional'no-Differentsial'nyh Uravnenij, Nauka, Moscow, 1991, 280 pp. (In Russian) | MR
[2] N. V. Azbelev, V. P. Maksimov, L. F. Rahmatullina, Elementy Sovremennoj Teorii Funktsional'no-Differentsial'nyh Uravnenij. Metody i Prilozheniya, Nauka, Moscow, 2002, 384 pp. (In Russian) | MR
[3] E. S. Zhukovskii, “Continuous dependence on parameters of solutions to Volterra's equations”, Sb. Math., 197:10 (2006), 1435–1457 | DOI | MR | Zbl
[4] E. O. Burlakov, E. S. Zhukovskii, “The continuous dependence of solutions to Volterra equations with locally contracting operators on parameters”, Russian Math. (Iz. VUZ), 54:8 (2010), 12–23 | DOI | MR | Zbl
[5] L. V. Kantorovich, G. P. Akilov, Funktsional'nyj Analiz, Nauka, Moscow, 1984, 752 pp. (In Russian) | MR
[6] L. V. Kantorovich, B. Z. Vulih, A. G. Pinsker, Funktsional'nyj Analiz v Poluuporyadochennyh Prostranstvah, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoj literatury, Moscow–Leningrad, 1950, 548 pp. (In Russian) | MR
[7] E. S. Zhukovskii, “On the theory of Volterra equations”, Differ. Equ., 25:9 (1989), 1132–1137 | MR
[8] V. P. Maksimov, “The Cauchy formula for a functional-differential equation”, Differ. Uravn., 13:4 (1977), 601–606 (In Russian) | MR | Zbl
[9] E. S. Zhukovskii, “The Volterra property and spectral properties of an inner superposition operator”, Differ. Equ., 30:2 (1994), 229–234 | MR
[10] E. S. Zhukovskii, “A nonlinear Volterra equation in a Banach function space”, Russian Math. (Iz. VUZ), 49:10 (2005), 14–24 | MR | Zbl
[11] I. P. Natanson, Teoriya Funktsij Veshchestvennoj Peremennoj, Nauka, Moscow, 1974, 480 pp. (In Russian) | MR
[12] H. M. T. Tahir, “On solving linear functional-differential equations”, Tambov University Reports. Series: Natural and Technical Sciences, 21:2 (2016), 417–431 (In Russian)
[13] E. S. Zhukovskii, H. M. T. Tahir, “O neotritsatel'nosti funktsii Koshi differentsial'nogo uravneniya s postoyannym zapazdyvaniem”, Sovremennye metody prikladnoj matematiki, teorii upravleniya i komp'yuternyh tekhnologij (PMTUKT-2016), IX Mezhdunarodnaya konferenciya, Sbornik trudov (Voronezh, 20–26 Sentyabrya 2016), Izdatel'stvo «Nauchnaya kniga», Voronezh, 2016, 154–158 (In Russian)