About functional inclusions in ordered spaces
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 611-614 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results about orderly covering multi-valued mappings are applied to studying functional inclusions in spaces of measurable functions. Existence conditions and estimates of solutions for such inclusions are obtained.
Keywords: partially ordered spaces, multi-valued orderly covering mappings, antitone disturbances of orderly covering mappings, multi-valued Nemytskii’s operator, existence of solutions of functional inclusions.
@article{VTAMU_2017_22_3_a15,
     author = {E. M. Yakubovskaya},
     title = {About functional inclusions in ordered spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {611--614},
     year = {2017},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a15/}
}
TY  - JOUR
AU  - E. M. Yakubovskaya
TI  - About functional inclusions in ordered spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 611
EP  - 614
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a15/
LA  - ru
ID  - VTAMU_2017_22_3_a15
ER  - 
%0 Journal Article
%A E. M. Yakubovskaya
%T About functional inclusions in ordered spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 611-614
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a15/
%G ru
%F VTAMU_2017_22_3_a15
E. M. Yakubovskaya. About functional inclusions in ordered spaces. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 611-614. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a15/

[1] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33 | DOI | MR | Zbl

[2] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Applications, 201 (2016), 330–343 | DOI | MR | Zbl

[3] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On coincidence points of mappings in partially ordered spaces”, Doklady Mathematics, 88:3 (2013), 710–713 | DOI | MR | Zbl

[4] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points of set-valued mappings in partially ordered spaces”, Doklady Mathematics, 88:3 (2013), 727–729 | DOI | MR | Zbl

[5] A. V. Arutyunov, “Covering Mappings in Metric Spaces and Fixed Points”, Doklady Mathematics, 76:2 (2007), 665–668 | DOI | MR | Zbl

[6] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “On the well-posedness of differential equations unsolved for the derivative”, Differential Equations, 47 (2011), 1541–1555 | DOI | MR | Zbl

[7] E. S. Zhukovskiy, “On Ordered-Covering Mappings and Implicit Differential Inequalities”, Differential Equations, 52:12 (2016), 1539–1556 | DOI | MR | MR | Zbl

[8] E. S. Zhukovskiy, E. A. Pluzhnikova, E. M. Yakubovskaya, “On stability of ordered covering of multi-valued mappings under antitone disturbances”, Tambov University Review. Series: Natural and Technical Sciences, 21:6 (2016), 1969–1973 (In Russian)