@article{VTAMU_2017_22_3_a15,
author = {E. M. Yakubovskaya},
title = {About functional inclusions in ordered spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {611--614},
year = {2017},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a15/}
}
E. M. Yakubovskaya. About functional inclusions in ordered spaces. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 611-614. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a15/
[1] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33 | DOI | MR | Zbl
[2] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Applications, 201 (2016), 330–343 | DOI | MR | Zbl
[3] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On coincidence points of mappings in partially ordered spaces”, Doklady Mathematics, 88:3 (2013), 710–713 | DOI | MR | Zbl
[4] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points of set-valued mappings in partially ordered spaces”, Doklady Mathematics, 88:3 (2013), 727–729 | DOI | MR | Zbl
[5] A. V. Arutyunov, “Covering Mappings in Metric Spaces and Fixed Points”, Doklady Mathematics, 76:2 (2007), 665–668 | DOI | MR | Zbl
[6] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “On the well-posedness of differential equations unsolved for the derivative”, Differential Equations, 47 (2011), 1541–1555 | DOI | MR | Zbl
[7] E. S. Zhukovskiy, “On Ordered-Covering Mappings and Implicit Differential Inequalities”, Differential Equations, 52:12 (2016), 1539–1556 | DOI | MR | MR | Zbl
[8] E. S. Zhukovskiy, E. A. Pluzhnikova, E. M. Yakubovskaya, “On stability of ordered covering of multi-valued mappings under antitone disturbances”, Tambov University Review. Series: Natural and Technical Sciences, 21:6 (2016), 1969–1973 (In Russian)