About spherical surface linearization
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 591-595
Cet article a éte moissonné depuis la source Math-Net.Ru
A linear approximation of a spherical surface are built.
Keywords:
unit sphere, big circle, diameter plane, spherical triangle, partition diameter, optimum point of tangency.
Mots-clés : optimal tangent plane
Mots-clés : optimal tangent plane
@article{VTAMU_2017_22_3_a12,
author = {V. I. Fomin},
title = {About spherical surface linearization},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {591--595},
year = {2017},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a12/}
}
V. I. Fomin. About spherical surface linearization. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 591-595. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a12/
[1] V. A. Il'in, E. G. Poznyak, Osnovy Matematicheskogo Analiza: v 2 ch, Ch. II, Fizmatlit, Moscow, 2002, 464 pp. (In Russian)
[2] A. V. Pogorelov, Differentsial'naya Geometriya, Nauka, Moscow, 1974, 176 pp. (In Russian)
[3] A. I. Gerasimovich, N. P. Keda, M. B. Sugak, Matematicheskij Analiz: v 2 ch., Ch. 2, 1990, 272 pp. (In Russian)
[4] V. A. Il'in, E. G. Poznyak, Analiticheskaya Geometriya, Fizmatlit, Moscow, 2009, 224 pp. (In Russian)