About spherical surface linearization
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 591-595 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear approximation of a spherical surface are built.
Keywords: unit sphere, big circle, diameter plane, spherical triangle, partition diameter, optimum point of tangency.
Mots-clés : optimal tangent plane
@article{VTAMU_2017_22_3_a12,
     author = {V. I. Fomin},
     title = {About spherical surface linearization},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {591--595},
     year = {2017},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a12/}
}
TY  - JOUR
AU  - V. I. Fomin
TI  - About spherical surface linearization
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 591
EP  - 595
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a12/
LA  - ru
ID  - VTAMU_2017_22_3_a12
ER  - 
%0 Journal Article
%A V. I. Fomin
%T About spherical surface linearization
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 591-595
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a12/
%G ru
%F VTAMU_2017_22_3_a12
V. I. Fomin. About spherical surface linearization. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 591-595. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a12/

[1] V. A. Il'in, E. G. Poznyak, Osnovy Matematicheskogo Analiza: v 2 ch, Ch. II, Fizmatlit, Moscow, 2002, 464 pp. (In Russian)

[2] A. V. Pogorelov, Differentsial'naya Geometriya, Nauka, Moscow, 1974, 176 pp. (In Russian)

[3] A. I. Gerasimovich, N. P. Keda, M. B. Sugak, Matematicheskij Analiz: v 2 ch., Ch. 2, 1990, 272 pp. (In Russian)

[4] V. A. Il'in, E. G. Poznyak, Analiticheskaya Geometriya, Fizmatlit, Moscow, 2009, 224 pp. (In Russian)