Continuous dependence on parameters of solutions to boundary-value problems for a system of implicit differential equations with deviating argument
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 579-584 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions are offered that ensure a continuous dependence on the parameters solutions of the boundary value problem for a system of implicit differential equations with a deviating argument. The method used in this paper is based on the results on vector-covering mappings obtained by E.S. Zhukovsky.
Keywords: a system of differential equations, a boundary-value problem, vector covering mappings, metric spaces.
@article{VTAMU_2017_22_3_a10,
     author = {V. S. Treshchev},
     title = {Continuous dependence on parameters of solutions to boundary-value problems for a system of implicit differential equations with deviating argument},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {579--584},
     year = {2017},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a10/}
}
TY  - JOUR
AU  - V. S. Treshchev
TI  - Continuous dependence on parameters of solutions to boundary-value problems for a system of implicit differential equations with deviating argument
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 579
EP  - 584
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a10/
LA  - ru
ID  - VTAMU_2017_22_3_a10
ER  - 
%0 Journal Article
%A V. S. Treshchev
%T Continuous dependence on parameters of solutions to boundary-value problems for a system of implicit differential equations with deviating argument
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 579-584
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a10/
%G ru
%F VTAMU_2017_22_3_a10
V. S. Treshchev. Continuous dependence on parameters of solutions to boundary-value problems for a system of implicit differential equations with deviating argument. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 579-584. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a10/

[1] E. R. Avakov, A. V. Arutyunov, E. S. Zhukovski\v{i}, “Covering mappings and their applications to differential equations not solved with respect to the derivative”, Differential Equations, 45:5 (2009), 627–649 | DOI | MR | Zbl

[2] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “On the well-posedness of differential equations unsolved for the derivative”, Differential Equations, 47 (2011), 1541–1555 | DOI | MR | Zbl

[3] E. S. Zhukovskii, E. A. Pluzhnikova, “Covering mappings in a product of metric spaces and boundary value problems for differential equations unsolved for the derivative”, Differential Equations, 49:4 (2013), 420–436 | DOI | MR | Zbl

[4] E. S. Zhukovskii, E. A. Pluzhnikova, “On controlling objects whose motion is defined by implicit nonlinear differential equations”, Autom. Remote Control, 76:1 (2015), 24–43 | DOI | MR | Zbl

[5] E. S. Zhukovskii, E. A. Pluzhnikova, “On a periodic boundary value problem for an implicit differential equation”, Izv. IMI UdGU, 2012, no. 1(39), 52–53 (In Russian) | Zbl

[6] E. S. Zhukovskiy, “On perturbations of covering mappings in spaces with vector-valued metrics”, Tambov University Review. Series: Natural and Technical Sciences, 21:2 (2016), 373–377 (In Russian)

[7] E. S. Zhukovskiǐ, “Perturbations of vectorial coverings and systems of equations in metric spaces”, Siberian Math. J., 57:2 (2016), 230–241 | DOI | MR | Zbl

[8] V. S. Treshchyov, “Solvability of boundary-value problems for differential equations with deviating argument”, Tambov University Review. Series: Natural and Technical Sciences, 19:2 (2014), 440–443 (In Russian)

[9] V. S. Treshchyov, “Continuous dependence on parameters of solutions to boundary-value problems for differential equations with deviating argument”, Tambov University Review. Series: Natural and Technical Sciences, 20:1 (2015), 62–66 (In Russian)

[10] M. G. Alves, E. A. Pluzhnikova, V. S. Treshchev, “The conditions of the covering property for the Nemytskiy operator in lebegues spaces”, Tambov University Review. Series: Natural and Technical Sciences, 20:5 (2015), 992–995 (In Russian)

[11] V. S. Treshchev, “About the Cauchy problem for a system of implicit differential equations”, Tambov University Review. Series: Natural and Technical Sciences, 21:2 (2016), 430–434 (In Russian)

[12] V. S. Treshchyov, “Ob usloviyah nakryvaniya operatora Nemytskogo v prostranstve izmerimyh sushchestvenno ogranichennyh funktsij”, Matematicheskoe i Komp'yuternoe Modelirovanie, Informatsionnye Tekhnologii Upravleniya, Shkola dlya studentov, aspirantov i molodyh uchenyh «MKMITU-2016» (Voronezh, 2016), Sbornik trudov, Izdatel'stvo «Nauchnaya kniga», Voronezh, 2016, 229–232 (In Russian)

[13] V. S. Treshchyov, “O nelinejnoj kraevoj zadache dlya sistem neyavnyh differentsial'nyh urvnenij s otklonyayushchimsya argumentom”, Sovremennye Metody Prikladnoj Matematiki, Teorii Upravleniya i Komp'yuternyh Tekhnologij (PMTUKT-2016), IX Mezhdunarodnaya konferenciya, Sbornik trudov (Voronezh, 20–26 Sentyabrya 2016), Izdatel'stvo «Nauchnaya kniga», Voronezh, 2016, 356–360 (In Russian)