Mots-clés : Legendre condition.
@article{VTAMU_2017_22_3_a1,
author = {A. V. Gorbacheva and D. Yu. Karamzin},
title = {Lipschitz continuity of the measure {Lagrange} multiplier from the maximum principle for optimal control problems with state constraints of equality and inequality type},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {508--516},
year = {2017},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a1/}
}
TY - JOUR AU - A. V. Gorbacheva AU - D. Yu. Karamzin TI - Lipschitz continuity of the measure Lagrange multiplier from the maximum principle for optimal control problems with state constraints of equality and inequality type JO - Vestnik rossijskih universitetov. Matematika PY - 2017 SP - 508 EP - 516 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a1/ LA - ru ID - VTAMU_2017_22_3_a1 ER -
%0 Journal Article %A A. V. Gorbacheva %A D. Yu. Karamzin %T Lipschitz continuity of the measure Lagrange multiplier from the maximum principle for optimal control problems with state constraints of equality and inequality type %J Vestnik rossijskih universitetov. Matematika %D 2017 %P 508-516 %V 22 %N 3 %U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a1/ %G ru %F VTAMU_2017_22_3_a1
A. V. Gorbacheva; D. Yu. Karamzin. Lipschitz continuity of the measure Lagrange multiplier from the maximum principle for optimal control problems with state constraints of equality and inequality type. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 3, pp. 508-516. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_3_a1/
[1] A. V. Gorbacheva, D. Yu. Karamzin, “Clarification of the optimality conditions in control problems with state constraints of equality and inequality types”, Tambov University Reports. Series: Natural and Technical Sciences, 21:1 (2016), 40–55 (In Russian)
[2] A. V. Gorbacheva, “The continuity of the measure lagrange-multiplier from the maximum principle for an optimal control problem with equality and inequality state constraints under weak regularity conditions of the extremal process”, Tambov University Reports. Series: Natural and Technical Sciences, 21:1 (2016), 28–39 (In Russian)
[3] A. V. Arutyunov, D. Yu. Karamzin, “On some continuity properties of the measure Lagrange multiplier from the maximum principle for state constrained problems”, SIAM J. Control Optim., 53:4 (2015), 2514–2540 | DOI | MR | Zbl
[4] A. Ya. Dubovitskii, A. A. Milyutin, “Necessary conditions for a weak extremum in optimal control problems with mixed constraints of the inequality type”, U.S.S.R. Comput. Math. Math. Phys., 8:4 (1968), 24–98 | DOI | MR | Zbl
[5] I. P. Natanson, Teoriya Funkcij Veshchestvennoj Peremennoj, Nauka, Moscow, 1974 (In Russian) | MR
[6] V. M. Alekseev, V. M. Tihomirov, S. V. Fomin, Optimal'noe Upravlenie, Nauka, Moscow, 1979 (In Russian) | MR