Methods of noninvasive measuring of internal temperature of body
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 2, pp. 464-470 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Noncontact receiving of clinical information in current mode with the computer processing of the results in a convenient form for the doctor, without harmful effects on the patient’s body is relevant. Measurement of internal temperature of body can give unique diagnostic information. The review gives consideration and comparison of the noninvasive measurement methods of internal body temperature at this stage. Such methods as magnetic resonance (NMR) thermometry, microwave radiometry, acoustic thermometry are described. Information about the principles of deep temperatures calculation in each of the methods is given. Comparison of the methods for spatial, temporal resolution, accuracy of temperature determination, equipment cost is proposed. The advantages and disadvantages of the methods in terms of clinical applications are given.
Keywords: magnetic resonance (NMR) thermometry; microwave radiometry; radiothermograph; acoustic thermometry; internal temperature.
@article{VTAMU_2017_22_2_a5,
     author = {L. V. Zhorina},
     title = {Methods of noninvasive measuring of internal temperature of body},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {464--470},
     year = {2017},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_2_a5/}
}
TY  - JOUR
AU  - L. V. Zhorina
TI  - Methods of noninvasive measuring of internal temperature of body
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 464
EP  - 470
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_2_a5/
LA  - ru
ID  - VTAMU_2017_22_2_a5
ER  - 
%0 Journal Article
%A L. V. Zhorina
%T Methods of noninvasive measuring of internal temperature of body
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 464-470
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_2_a5/
%G ru
%F VTAMU_2017_22_2_a5
L. V. Zhorina. Methods of noninvasive measuring of internal temperature of body. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 2, pp. 464-470. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_2_a5/

[1] A. A. Volkov, V. N. Nikiforov, Yu. A. Pirogov, A. V. Ivanov, A. S. Prokhorov, “Temperature field registration by the magnetic resonance imaging technique”, Medical Physics, 2011, no. 1(49), 75–81 (In Russian)

[2] M. V. Gulyaev, S. K. Khanov, D. D. Namestnikova, L. V. Gubskiy, Chzhou Fushan, Yu. A. Pirogov, V. Ya. Panchenko, “Magnetic resonance thermometry of rats brain by local NMR spectroscopy method”, Journal of Radio Electronics, 2013, no. 10, 9 (In Russian)

[3] S. K. Khanov, Magnetic Resonance Thermometry Based on Measurement of Longitudinal Relaxation Time and Chemical Shift, Cand. phys.-math. sci. diss. abstr., Moscow State University Publ., Moscow, 2013 (In Russian)

[4] K. A. Ilyasov, Development of Magnetic Resonance Imaging Methods in the Study of Self-Diffusion of Temperature Fields in Living Systems, Dr. phys.-math. sci. diss. abstr., Kazan (Volga Region) Federal University Publ., Kazan, 2011 (In Russian)

[5] A. A. Volkov, S. K. Kakageldyev, A. S. Prokhorov, Yu. A. Pirogov, “Traditional methods of heating in MR-guiding thermometery”, Journal of Radio Electronics, 2012, no. 1, 16 (In Russian)

[6] V. Rieke, K. B. Pauly, “MR Thermometry”, J. Magn. Reson. Imaging, 2008, no. 27(2), 376–390 | DOI

[7] B. Quesson, J. A. de Zwart, C. T. W. Moonen, “Magnetic Resonance Temperature Imaging for Guidance of Thermotherapy”, J. Magn. Reson. Imaging, 2000, no. 12, 525–533 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[8] J. P. Hornak, The Basics of MRI, The Chester F. Carlson Center for Imaging Science at Rochester Institute of Technology, Rochester, 2010

[9] A. A. Volkov, Magnetic Resonance Imaging of Thermal Effects in Modeling Environments, Cand. phys.-math. sci. diss. abstr., Moscow, 2012 (In Russian)

[10] Focused ultrasound ablation under MRI control, Medical Company, (In Russian) http://www.medicalcompany.ru/ablyaciya_fokusirovannym_ultrazvukom

[11] A. V. Vaysblat, S. G. Vesnin, M. A. Konkin, A. V. Lashchenkov, N. N. Tikhomirova, Using microwave radiometry in the diagnosis of breast cancer, Association of Microwave Radiometry, (In Russian) http://www.radiometry.ru/radiometry/books/upload/8/13020706.pdf

[12] A. D. Mansfel'd, “Acoustothermometry: Current status and prospects”, Acoustical Physics, 55:4-5 (2009), 546–556 (In Russian)

[13] S. N. Kolesov, Multiple Ranging Passive Location of the Human Thermal Radiation in the Diagnosis of the Central and Peripheral Nervous System Injuries, Dr. med. sci. diss. abstr., Russian Academy of Medical Sciences Institute of Neurosurgery named after N. N. Burdenko, Moscow, 1993 (In Russian) | Zbl

[14] S. G. Vesnin, M. K. Sedankin, “Comparison of the microwave medical antennas”, Biomedical Radioelectronics, 2012, no. 10, 63–74 (In Russian)

[15] S. G. Vesnin, “Theory of using the RTM method in mammalogy”, Organizational, Medical and Technical Aspects of Clinical Mammology, 5th All-Russian Scientific-Practical Conference with International Participatio, Materials of Conference, Moscow, 2008, 3–6 (In Russian)

[16] S. G. Vesnin, M. K. Sedankin, “Development of a series of antennas-applicators for non-invasive measurement of human body tissue temperature at various pathologies”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2012, no. 6, Simulation and research, 43–61 (In Russian)

[17] Yu. E. Sedelnikov, O. V. Potapova, “Focused antennas in problems of medical radiometry”, Engineering Journal: Science and Innovation, 2014, no. 2, 11 (In Russian)

[18] A. Oikonomou, I. S. Karanasiou, N. K. Uzunoglu, “Phased-array near field radiometry for brain intracranial applications”, Progress In Electromagnetics Research, 109 (2010), 345–360 http://www.jpier.org/pier/pier.php?paper=10073004 | DOI

[19] E. D. Biryukov, V. S. Verba, A. G. Gudkov, V. Yu. Leushin, V. A. Plyushchev, I. A. Sidorov, V. G. Sister, D. I. Tsyganov, Multichannel Radiotermograf, Patent no. 2310876 RF, 2007 (In Russian)

[20] A. F. Bobrikhin, A. G. Gudkov, V. Yu. Leushin, V. F. Los, V. V. Popov, I. O. Porokhov, I. A. Sidorov, “Modeling of antennas-applicators of the unified antenna lattices for radiothermomapping multichannel systems”, Antennas, 2014, no. 2(201), 17–26 (In Russian)

[21] V. N. Vyuginov, A. G. Gudkov, A. V. Korolev, V. Yu. Leushin, V. A. Plyushchev, V. V. Popov, I. A. Sidorov, “The electronic module of the multichannel microwave circuit for radio thermomapping systems”, Electromagnetic Waves and Electronic System, 2014, no. 1, 27–34 (In Russian)

[22] A. G. Gudkov, V. Yu. Leushin, A. F. Bobrikhin, V. F. Los, I. O. Porokhov, “Development of functional series of standardized microwave antenna arrays of modular type for radiothermomapping multichannel systems”, Medical and Engineering Technologies on the Guard of Health, Scientific-Technical Conference “Medical and Engineering Technologies on the Guard of Health”, Materials of Conference (Portugal, September, 21-28, 2012), Scientific-Research Institute of Radiotronics and Laser Technics of Bauman Moscow State Technical University Publ., Moscow, 2012, 167–168 (In Russian)

[23] O. A. Sinelnikova, R. A. Kerimov, G. T. Sinyukova, S. B. Polikarpova, “Microwave radiothermometry in the diagnosis and evaluation of the neoadjuvant treatment of patients with breast cancer”, Women Reproductive System Tumors, 2011, no. 3, 23–28 (In Russian) | DOI

[24] O. A. Sinelnikova, R. A. Kerimov, G. T. Sinyukova, “Microwave radiometry method in the complex diagnosis of breast cancer”, Medical Council, 2013, no. 5-6, 102–104 (In Russian)

[25] P. V. Subochev, Development of methods of passive acoustic thermography and monitoring acoustic brightness, Cand. phys.-math. sci. diss. abstr., Institute of Applied Physics RAS, Nizhny Novgorod, 2010 (In Russian)

[26] E. V. Krotov, A. M. Reyman, P. V. Subochev, “Account of frequency dependence of the acoustic absorption coefficient in solving problems of acoustic-brightness thermometry”, Radiophysics and Quantum Electronics, 49:6 (2006), 478–488 (In Russian)

[27] A. A. Anosov, A. S. Kazanskii, Yu. A. Less, A. S. Sharakshane, “Thermal acoustic radiation in model membranes at phase transition of lipids”, Acoustical Physics, 53:6 (2007), 843–848 (In Russian)

[28] A. S. Sharakshane, Restoring of parameters of the changing in time spatial temperature distribution of model biological objects by acoustic thermography, Cand. phys.-math. sci. diss. abstr., V. A. Kotelnikov Institute of Radio Engineering and Electronics of RAS, Moscow, 2014 (In Russian)

[29] A. A. Anosov, “Usage of a priori information in dynamical inverse problems of passive acoustic thermometry”, Journal of Radio Electronics, 2016, no. 6 http://jre.cplire.ru | Zbl

[30] A. A. Anosov, A. S. Kazanskiy, A. D. Mansfel'd, A. S. Sharakshane, “Detection of heated region's location and size by dynamical acoustical thermography”, Journal of Radio Electronics, 2013, no. 3 (In Russian) http://jre.cplire.ru | Zbl