Homogeneous artificial neural network with a variable activation
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 1, pp. 39-44
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The model of homogeneous artificial neural network (ANN) with a variable activation function of the neuron isstudied. The program is developed on Python 3. Numerical experiments for artificial neural network training using classical nonlinear programming methods (gradient, Monte Carlo, coordinate descent) on the basis of empirical data of blood tests showed that such approach can be used for the ANN-models implementation in various fields.
Keywords: artificial neural network; activation function of artificial neuron; program for artificial neural network simulation; blood test results of patients.
@article{VTAMU_2017_22_1_a5,
     author = {A. A. Arzamastsev and M. A. Kislyakov and N. A. Zenkova},
     title = {Homogeneous artificial neural network with a variable activation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {39--44},
     year = {2017},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_1_a5/}
}
TY  - JOUR
AU  - A. A. Arzamastsev
AU  - M. A. Kislyakov
AU  - N. A. Zenkova
TI  - Homogeneous artificial neural network with a variable activation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 39
EP  - 44
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_1_a5/
LA  - ru
ID  - VTAMU_2017_22_1_a5
ER  - 
%0 Journal Article
%A A. A. Arzamastsev
%A M. A. Kislyakov
%A N. A. Zenkova
%T Homogeneous artificial neural network with a variable activation
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 39-44
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_1_a5/
%G ru
%F VTAMU_2017_22_1_a5
A. A. Arzamastsev; M. A. Kislyakov; N. A. Zenkova. Homogeneous artificial neural network with a variable activation. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 1, pp. 39-44. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_1_a5/

[1] A. S. Novikov, A. A. Ezhov, “Rosenblatt multilayer neural networks and its application for solving problems of recognition signatures”, News of the Tula State University. Technical Sciences, 2016, no. 2, 188–197 (In Russian)

[2] E. A. Blagoveshchenskaya, D. V. Zuev, “RPROP Method Modification for Pattern Recognition”, Intellectual Technologies on Transport, 2015, no. 3, 46–49 (In Russian)

[3] E. G. Zhilyakov, A. Yu. Likhosherstnyy, “Method of objects’ recognition on air-space images of earth surface”, Belgorod State University Scientific Bulletin. Economics. Computer Science, 2011, no. 13-1(108), 115–120 (In Russian)

[4] A. A. Arzamastsev, A. V. Neudakhin, N. A. Zenkova, “Automatical technology of expert systems building with intellectual core on base of ANN (Artificial Neurons Network)-models”, Open Education, 2008, no. 3(68), 35–39 (In Russian)

[5] A. A. Arzamastsev, N. A. Zenkova, A. V. Neudakhin, “Technology of Medical Expert System Building on the Basis of the Device of Artificial Neural Networks”, Information Technology, 2009, no. 8, 60–63 (In Russian)

[6] A. A. Arzamastsev, A. V. Neudakhin, “Methods of elaboration of expert systems using ANN (Artificial Neurons Network)-models as an intellectual core base”, Tambov University Reports. Series: Natural and Technical Sciences, 13:2-3 (2008), 219–222 (In Russian)

[7] A. A. Arzamastsev, O. L. Fabrikantov, N. A. Zenkova, N. K. Belousov, “Optimization of formulae FOR intraocular lenses calculating”, Tambov University Reports. Series: Natural and Technical Sciences, 21:1 (2016), 208–213 (In Russian)

[8] “Generalization of medical empirical data using ANN-models”, Tambov University Reports. Series: Natural and Technical Sciences, 18:1 (2013), 201–203 (In Russian)

[9] A. S. Mishin, A. A. Arzamastsev, N. A. Zenkova, “Expert system for results prognosis of surgery treatment of colorectal cancer patients complicated by acute intestinal obstruction”, Tambov University Reports. Series: Natural and Technical Sciences, 17:2 (2012), 649–658 (In Russian)

[10] A. A. Arzamastsev, N. A. Zenkova, “System of psychological testing basing on artificial neural network apparatus”, Artificial Intellect, no. 2, 237–242 (In Russian)

[11] N. A. Zenkova, “Neuro-network modeling in psychological and social researches”, Tambov University Reports. Series: Natural and Technical Sciences, 10:1 (2005), 112–114 (In Russian)

[12] O. V. Kryuchin, A. A. Arzamastsev, N. A. Zenkova, D. V. Sletkov, “Simulation of the social object on the basis of the artificial neural networks with use of cluster's systems”, Tambov University Reports. Series: Natural and Technical Sciences, 15:5 (2010), 372–375 (In Russian)

[13] “Use of technology of artificial neural networks for forecasting of time series on an example of currency pairs”, Tambov University Reports. Series: Natural and Technical Sciences, 15:1 (2010), 312 (In Russian)

[14] A. A. Arzamastsev, O. V. Kryuchin, P. A. Azarova, N. A. Zenkova, “Use of technology of artificial neural networks for forecasting of time series on an example of currency pairs”, Tambov University Reports. Series: Natural and Technical Sciences, 11:4 (2006), 564–570 (In Russian)

[15] A. A. Arzamastsev, O. V. Kryuchin, A. N. Korolev, N. A. Zenkova, Accreditation Certificate about Official Registration of Program for EVM no 2007610622 “Multifunctional Program Complex for Computer Modeling basing on Artificial Neural Network with Self-Organization of Structure”., Requirement no. 2006614383. Registered in register of programs for EVM 8 February 2007 (In Russian)

[16] O. V. Kryuchin, A. A. Arzamastsev, “Parallel algorithm of self-organization of artificial neuron network structure”, Tambov University Reports. Series: Natural and Technical Sciences, 16:1 (2011), 199–200 (In Russian)

[17] A. N. Gorban', “Generalized approximation theorem and calculating abilities of neuron networks”, Siberian Journal of Numerical Mathematics, 1:1 (1998), 11–24 (In Russian) | MR