On the solvability of control systems with implicit dynamics and endpoint constraints
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 1, pp. 13-18
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Control systems with implicit dynamics and endpoint constraints are considered. For these systems, sufficient solvability conditions are obtained in the terms of Lipschitz and covering mappings.
Keywords: control system, boundary value problem, covering mapping.
@article{VTAMU_2017_22_1_a1,
     author = {Z. T. Zhukovskaya},
     title = {On the solvability of control systems with implicit dynamics and endpoint constraints},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {13--18},
     year = {2017},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_1_a1/}
}
TY  - JOUR
AU  - Z. T. Zhukovskaya
TI  - On the solvability of control systems with implicit dynamics and endpoint constraints
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 13
EP  - 18
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_1_a1/
LA  - ru
ID  - VTAMU_2017_22_1_a1
ER  - 
%0 Journal Article
%A Z. T. Zhukovskaya
%T On the solvability of control systems with implicit dynamics and endpoint constraints
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 13-18
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_1_a1/
%G ru
%F VTAMU_2017_22_1_a1
Z. T. Zhukovskaya. On the solvability of control systems with implicit dynamics and endpoint constraints. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 1, pp. 13-18. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_1_a1/

[1] A. V. Arutyunov, “Nakryvayushchie otobrazheniya v metricheskih prostranstvah i nepodvizhnye tochki”, DAN, 146:2 (2007), 151—155 (In Russian)

[2] A. Arutyunov, E. Avakov, B. Gel‘man, A. Dmitruk, V. Obukhovskii, “Locally covering maps in metric spaces and coincidence points”, J. Fixed Points Theory and Appl, 5:1 (2009), 105–127 | DOI | MR | Zbl

[3] A. V. Arutyunov, “Ustojchivost’ tochek sovpadeniya i svojstva nakryvayushchih otobrazhenij”, Matematicheskie zametki, 86:2 (2009), 163–169 (In Russian) | Zbl

[4] A. V. Arutyunov, B .D. Gel’man, “O strukture mnozhestva tochek sovpadeniya”, Matematicheskiy sbornik, 206:3 (2015), 35—56 (In Russian) | MR | Zbl

[5] A. V. Arutyunov, E. R. Avakov, E. S. Zhukovskiy, “Nakryvayushchie otobrazheniya i ih prilozheniya k differencial’nym uravneniyam, ne razreshennym otnositel’no proizvodnoj”, Differencial’nie uravneniya, 45:5 (2009), 613—634 (In Russian) | MR | Zbl

[6] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Anal, 75:3 (2012), 1026–1044 | DOI | MR | Zbl

[7] A. V. Arutyunov, S. E. Zhukovskiy, “Existence of local solutions in constrained dynamic systems”, Applicable Analysis, 90:6 (2011), 889–898 | DOI | MR | Zbl

[8] E. S. Zhukovskiy, E. A. Pluzhnikova, “K voprosu o razreshimosti upravlyaemyh differencial’nyh sistem”, Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki, 18:1 (2013), 49–54 (In Russian)

[9] S. E. Zhukovskiy, Z. T. Zhukovskaya, “Razreshimost’ kraevih zadach dlya neyavnih differentsial’nih vklucheniy”, Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki, 21:6 (2016), 1983–1989 (In Russian)

[10] Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnih otobrazheniy i differentsial’nih vklucheniy, KomKniga, Moscow, 2005 (In Russian)