Mots-clés : existence of solutions
@article{VTAMU_2017_22_1_a0,
author = {E. O. Burlakov},
title = {Volterra operator inclusions in the theory of generalized neural field models with {control.~II}},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {7--12},
year = {2017},
volume = {22},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_1_a0/}
}
TY - JOUR AU - E. O. Burlakov TI - Volterra operator inclusions in the theory of generalized neural field models with control. II JO - Vestnik rossijskih universitetov. Matematika PY - 2017 SP - 7 EP - 12 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_1_a0/ LA - en ID - VTAMU_2017_22_1_a0 ER -
E. O. Burlakov. Volterra operator inclusions in the theory of generalized neural field models with control. II. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 1, pp. 7-12. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_1_a0/
[1] E. O. Burlakov, “Volterra operator inclusions in the theory of generalized neural field models with control”, I, Tambov University Reports. Series: Natural and Technical Sciences, 21:6 (2016), 1950–1958 | DOI
[2] E. Burlakov, E. Zhukovskiy, A. Ponosov, J. Wyller, “On wellposedness of generalized neural field equations with delay”, Journal of Abstract Differential Equations and Applications, 6 (2015), 51–80 | MR | Zbl
[3] E. Burlakov, E. S. Zhukovskiy, “Existence, uniqueness and continuous dependence on control of solutions to generalized neural field equations”, Tambov University Reports. Series: Natural and Technical Sciences, 20:1 (2015), 9–16 | MR
[4] J. S. Taube, J. P. Bassett, “Persistent neural activity in head direction cells”, Cereb. Cortex, 13 (2003), 1162–1172 | DOI
[5] X-J. Wang, “Synaptic reverberation underlying mnemonic persistent activity”, Trends Neurosci, 24 (2001), 455–463 | DOI
[6] P. A. Tass, “A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations”, Biological cybernetics, 89 (2003), 81–88 | DOI | Zbl
[7] P. Suffczynski, S. Kalitzin, F. H. Lopes Da Silva, “Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network”, Neuroscience, 126 (2004), 467–484 | DOI
[8] M. A. Kramer, B. A. Lopour, H. E. Kirsch, A. J. Szeri, “Bifurcation control of a seizing human cortex”, Physical Review E, 73:4 (2006), 1–16 | DOI | MR
[9] Schiff S. J., “Towards model-based control of Parkin - son’s disease”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368 (2010), 2269–2308 | DOI | MR | Zbl
[10] Ruths J., Taylor P., Dauwels J., “Optimal Control of an Epileptic Neural Population Model”, Proceedings of the International Federation of Automatic Control (Cape Town, 2014)
[11] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Introduction to the Theory of Multivalued Maps and Differential Inclusions, 2nd ed., Librokom, Moscow, 2011 | MR