Optimal control of the stress-deformed states of a composite layered medium
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 4, pp. 534-549
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The proposed study considers the compositional medium, which is a set of a finite number of volumetric layers with clearly defined surfaces of mutual adjacency. The mathematical description of such a medium is carried out by means of a layered domain, which defines a model of a layered elastic compositional medium in three-dimensional Euclidean space. Functions describing the quantitative characteristics of the material of the compositional medium belong to the class of bounded summable functions that have generalized derivatives and are elements of Sobolev space. At the same time, the following hypothesis is adopted: the elements of the surfaces of mutual adjoining layers are not subject to tension and compression during deformation (bending) (analogous to one of the well-known Kirchhoff hypotheses). The work consists of three parts: the first part presents a mathematical description of a layered medium with the terminology of layered domains, classical function spaces with a carrier in these domains, a description of phenomena near the surfaces of adjoining layers of a compositional medium; the second part is devoted to the description of deformations of the compositional medium and contains the formulation of the problem of the stress-deformed state of the compositional layered medium in a weak formulation, the definitions of auxiliary spaces and the classical statements used to analyze the problem, sufficient conditions for the weak solvability of the boundary value problem are established; the third (main) part is devoted to solving the problem of optimal distributed control of stress-deformed states of a compositional layered medium. The results of the study can be effectively used to solve the problems of optimal control of deformation processes of complexly structured continuous media. At the same time, the approaches used to analyze boundary value problems of continuum mechanics extend to more general representations of the components of the tensor function of deformations, which means that they can significantly expand the possibilities of analyzing more general problems of optimizing deformable composite materials.
Keywords: stress-deformed state of composite materials, boundary value problem in the layered domain, weak solvability, optimal control of deformations the layered composite.
@article{VSPUI_2024_20_4_a7,
     author = {A. P. Zhabko and V. V. Provotorov and E. V. Igonina and S. M. Sergeev},
     title = {Optimal control of the stress-deformed states of a composite layered medium},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {534--549},
     year = {2024},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a7/}
}
TY  - JOUR
AU  - A. P. Zhabko
AU  - V. V. Provotorov
AU  - E. V. Igonina
AU  - S. M. Sergeev
TI  - Optimal control of the stress-deformed states of a composite layered medium
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 534
EP  - 549
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a7/
LA  - ru
ID  - VSPUI_2024_20_4_a7
ER  - 
%0 Journal Article
%A A. P. Zhabko
%A V. V. Provotorov
%A E. V. Igonina
%A S. M. Sergeev
%T Optimal control of the stress-deformed states of a composite layered medium
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 534-549
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a7/
%G ru
%F VSPUI_2024_20_4_a7
A. P. Zhabko; V. V. Provotorov; E. V. Igonina; S. M. Sergeev. Optimal control of the stress-deformed states of a composite layered medium. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 4, pp. 534-549. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a7/

[1] Litvinov V. G., Optimization in elliptic boundary problems with applications in mechanics, Nauka Publ., M., 1987, 368 pp. (in Russian)

[2] Duvaut G., Lions J.-L., Les inequations en mecanique et en physique, Nauka Publ., M., 1989, 384 pp. (in Russian)

[3] Zhabko A. P., Karelin V. V., Provotorov V. V., Sergeev S. M., “Optimal control of thermal and wave processes in composite materials”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19:3 (2023), 403–418 | DOI

[4] Zhabko A. P., Shindyapin A. I., Provotorov V. V., “Stability of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 457–471 | DOI

[5] Provotorov V. V., Sergeev S. M., “Mathematical modeling of physical processes in composite media”, Russian Universities Reports. Mathematics, 29:146 (2024), 188–203 (in Russian)

[6] Lax P. D., Milgram N., “Parabolic equations. Contributions to the theory of partial differential”, Ann. Math. Studies, 33 (1954), 167–190

[7] Besov O. V., Il'in V. P., Nikol'skii S. M., Integral representations of functions and embedding theorems, Nauka Publ., M., 1975, 480 pp. (in Russian)

[8] Hlavacek I., Necas J., “On inequalities of Korn's type”, Arch. Rat. Mech. and Anal., 36:4 (1970), 305–334

[9] Gol'denblat I. I., Kopnov V. A., Criterion of strength and plasticity of structural materials, Mashinostroenie Publ., M., 1968, 192 pp. (in Russian)

[10] Golosnoy A. S., Provotorov V. V., Sergeev S. M., Raikhelgauz L. B., Kravets O. Ja., “Software engineering math for network applications”, Journal of Physics: Conference Series, 1399:4 (2019), 044047 | DOI

[11] Baranovskii E. S., Artemov M. A., Provotorov V. V., Zhabko A. P., “Non-isothermal creeping flows in a pipeline network: Existence results”, Symmetry, 13:7 (2021), 1300 | DOI

[12] Zhabko A. P., Provotorov V. V., Shindyapin A. I., “Optimal control of a differential-difference parabolic system with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 433–448 | DOI

[13] Alfutov N. A., Bolotin V. V., Vasil'ev V. V., Protasov V. D., Tarnopol'skii Ju. M., Carahov Ju. S., Composite materials, Handbook, Mashinostroenie Publ., M., 1990, 512 pp. (in Russian)