Nonlinear impulsive Hahn — Sturm — Liouville problems on the whole line
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 4, pp. 500-519
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Impulsive Hahn — Sturm — Liouville problems in singular cases are discussed. The existence of solutions of such equations on the whole axis and in the case of Weyl's limit-circle has been investigated. First, we construct the corresponding Green's function. This boundary-value problem is thus reduced to a fixed point problem. Later, we demonstrate the existence and uniqueness of the solutions to this problem by using the traditional Banach fixed point theorem. Finally, we derive an existence theorem without considering the solution's uniqueness. We apply the well-known Schauder fixed point to obtain this result.
Keywords: Hahn difference equations, singular nonlinear problems, boundary-value problems with impulses.
@article{VSPUI_2024_20_4_a5,
     author = {B. P. Allahverdiev and H. Tuna and H. A. Isayev},
     title = {Nonlinear impulsive {Hahn} {\textemdash} {Sturm} {\textemdash} {Liouville} problems on the whole line},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {500--519},
     year = {2024},
     volume = {20},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a5/}
}
TY  - JOUR
AU  - B. P. Allahverdiev
AU  - H. Tuna
AU  - H. A. Isayev
TI  - Nonlinear impulsive Hahn — Sturm — Liouville problems on the whole line
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 500
EP  - 519
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a5/
LA  - en
ID  - VSPUI_2024_20_4_a5
ER  - 
%0 Journal Article
%A B. P. Allahverdiev
%A H. Tuna
%A H. A. Isayev
%T Nonlinear impulsive Hahn — Sturm — Liouville problems on the whole line
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 500-519
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a5/
%G en
%F VSPUI_2024_20_4_a5
B. P. Allahverdiev; H. Tuna; H. A. Isayev. Nonlinear impulsive Hahn — Sturm — Liouville problems on the whole line. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 4, pp. 500-519. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a5/

[1] Amirov R. Kh., Ozkan A. S., “Discontinuous Sturm — Liouville problems with eigenvalue dependent boundary condition”, Mathematical Physics, Analysis and Geometry, 17:3–4 (2014), 483–491

[2] Aydemir K., Olğar H., Mukhtarov O. Sh., “The principal eigenvalue and the principal eigenfunction of a boundary-value-transmission problem”, Turkish Journal of Mathematics and Computer Science, 11:2 (2019), 97–100

[3] Aydemir K., Olgar H., Mukhtarov O. Sh., Muhtarov F., “Differential operator equations with interface conditions in modified direct sum spaces”, Filomat, 32:3 (2018), 921–931

[4] Aygar Y., Bairamov E., “Scattering theory of impulsive Sturm — Liouville equation in quantum calculus”, Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 3247–3259

[5] Bohner M., Cebesoy S., “Spectral analysis of an impulsive quantum difference operator”, Mathematical Methods in the Applied Sciences, 42 (2019), 5331–5339

[6] Guldu Y., Amirov R. Kh., Topsakal N., “On impulsive Sturm — Liouville operators with singularity and spectral parameter in boundary conditions”, Ukrainian Mathematical Journal, 64:12 (2013), 1816–1838

[7] Karahan D., Mamedov Kh. R., “On a $q$-boundary value problem with discontinuity conditions”, Vestnik of South Ural State University. Series Mathematics. Mechanics. Physics, 13:4 (2021), 5–12

[8] Karahan D., Mamedov Kh. R., “On a $q$-analogue of the Sturm — Liouville operator with discontinuity conditions”, Vestnik of Samara State Technical University. Series Mathematics and Physics Sciences, 26:3 (2022), 407–418

[9] Karahan D., Mamedov Kh. R., “Sampling theory associated with $q$-Sturm — Liouville operator with discontinuity conditions”, Journal of Contemporary Applied Mathematics, 10:2 (2020), 40–48

[10] Mukhtarov O., Olğar H., Aydemir K., “Eigenvalue problems with interface conditions”, Konuralp Journal of Mathematics, 8:2 (2020), 284–286

[11] Palamut Kosar N., “On a spectral theory of singular Hahn difference equation of a Sturm — Liouville type problem with transmission conditions”, Mathematical Methods in the Applied Sciences, 46:9 (2023), 11099–11111

[12] Annaby M. H., Hamza A. E., Makharesh S. D., “A Sturm — Liouville theory for Hahn difference operator”, Frontiers of Orthogonal Polynomials and $q$-serieseds. : Xin Li, Zuhair Nashed, World Scientific Publ., Singapore, 2018, 35–84

[13] Annaby M. H., Hamza A. E., Aldwoah K. A., “Hahn difference operator and associated Jackson — Nörlund integrals”, Journal of Optimization Theory and Applications, 154 (2012), 133–153

[14] Hahn W., “Ein Beitraäge zür Theorie der Orthogonalpolynome”, Monatshefte für Mathematik, 95 (1983), 19–24

[15] Allahverdiev B. P., Tuna H., “Nonlinear singular Hahn — Sturm — Liouville problems on $[\omega_{0},\infty)$”, Gulf Journal of Mathematics, 14:1 (2023), 1–12

[16] Allahverdiev B. P., Tuna H., “Nonlinear Hahn — Sturm — Liouville problems on infinite intervals”, Uzbek. Mathematical Journal, 66:2 (2022), 10–21

[17] Guseinov G. Sh., Yaslan I., “Boundary value problems for second order nonlinear differential equations on infinite intervals”, Journal of Mathematical Analysis and Applications, 290 (2004), 620–638

[18] English transl., Pergamon Press, New York, 1964, 406 pp.