Mots-clés : Markov moment
@article{VSPUI_2024_20_4_a4,
author = {A. V. Orekhov and I. V. Vasiliev},
title = {Metric binary trees, and nested cluster hierarchy building},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {487--499},
year = {2024},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a4/}
}
TY - JOUR AU - A. V. Orekhov AU - I. V. Vasiliev TI - Metric binary trees, and nested cluster hierarchy building JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2024 SP - 487 EP - 499 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a4/ LA - ru ID - VSPUI_2024_20_4_a4 ER -
%0 Journal Article %A A. V. Orekhov %A I. V. Vasiliev %T Metric binary trees, and nested cluster hierarchy building %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2024 %P 487-499 %V 20 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a4/ %G ru %F VSPUI_2024_20_4_a4
A. V. Orekhov; I. V. Vasiliev. Metric binary trees, and nested cluster hierarchy building. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 4, pp. 487-499. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a4/
[1] Mwangi D., 5 common data structures and algorithms used in machine learning (accessed: September 19, 2024) https://dzone.com/articles/5-common-data-structures-and-algorithms-used-in-ma
[2] Cormen T. H., Leiserson C. E., Rivest R. L., Stein C., Introduction to algorithms, 4$^{\rm th}$ ed., MIT Press and McGraw-Hill, Cambridge, Massachusetts, US, 2022, 1312 pp.
[3] Quinlan J. R., “Induction of decision trees”, Machine Learning, 1 (1986), 81–106 | DOI
[4] Uhlmann J. K., “Satisfying general proximity/similarity queries with metric trees”, Information Processing Letters, 40:4 (1991), 175–179 | DOI
[5] Samet H., Foundations of multidimensional and metric data structures, The Morgan Kaufmann series in data management systems, Morgan Kaufmann Publ. Inc., San Francisco, US, 2006, 1024 pp.
[6] Bozkaya T., Ozsoyoglu Z. M., “Indexing large metric spaces for similarity search queries”, ACM Trans. Database Systems, 24:3 (1999), 361–404 | DOI
[7] Brin S., “Near neighbor search in large metric spaces”, 21$^{\rm th}$ International Conference on Very Large Data Bases (VLDB 1995) (September 11–15, 1995, Zurich, Switzerland), 1995, 574–584
[8] Jambue M., Hierarchical cluster analysis and correspondences, Finance and Statistics Publ., M., 1988, 344 pp. (in Russian)
[9] Calirnski T., Harabasz J., “A dendrite method for cluster analysis”, Communications in Statistics, 1974, no. 3, 1–27
[10] Orekhov A. V., “Markov moment for the agglomerative method of clustering in Euclidean space”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:1 (2019), 76–92 (in Russian) | DOI
[11] Orekhov A. V., “Agglomerative method for texts clustering”, Lecture Notes in Computer Science, 11551, 2019, 19–32 | DOI
[12] Everitt B. S., Cluster analysis, John Wiley Sons Ltd. Press, Chichester, West Sussex, 2011, 330 pp.
[13] Duda R. O., Hart P. E., Stor D. G., Pattern classification, Wiley Press, New York, Chichester, 2001, 654 pp.
[14] Lance G. N., Williams W. T., “A general theory of classificatory sorting strategies. 1. Hierarchical systems”, The Computer Journal, 9 (1967), 373–380
[15] Milligan G. W., “Ultrametric hierarchical clustering algorithms”, Psychometrika, 44 (1979), 343–346
[16] Thorndike R. L., Who belongs in the family?, Psychometrika, 18 (1953), 267–276 | DOI
[17] Oldenderfer M. S., Blashfield R. K., “Cluster analysis”, Factor, discriminant and cluster analysis, Finance and Statistics Publ., M., 1989, 139–209 (in Russian)
[18] Orekhov A. V., “Quasi-deterministic processes with monotonic trajectories and unsupervised machine learning”, Mathematics, 9 (2021), 2301 | DOI
[19] Levin B. R., Theoretical foundations of statistical radio engineering, Radio and Communication Publ., M., 1989, 656 pp. (in Russian)
[20] Bodrunova S. S., Orekhov A. V., Blekanov I. S., Lyudkevich N. S., Tarasov N. A., “Topic detection based on sentence embeddings and agglomerative clustering with Markov moment”, Future Internet, 12 (2020), 144 | DOI
[21] Mazalov V. V., Mathematical game theory and applications, Lan' Publ., St. Petersburg, 2017, 448 pp. (in Russian)
[22] Bulinsky A. V., Shiryaev A. N., Theory of random processes, Fizmatlit Publ., M., 2003, 400 pp. (in Russian)
[23] Shiryaev A. N., Statistical sequential analysis, 2nd ed., Nauka Publ., M., 1976, 272 pp. (in Russian)
[24] Granichin O. N., Shalymov D. S., Avros R., Volkovich Z., “Randomized algorithm for finding the number of clusters”, Automation and Telemechanics, 2011, no. 4, 86–98 (in Russian)
[25] Hierarchical clustering (in Russian) (accessed: September 19, 2024) https://neerc.ifmo.ru/wiki/index.php?title=Иерархическая_кластеризация
[26] Rousseeuw P. J., “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis”, Journal of Comput. Appl. Math., 20 (1987), 53–65 | DOI
[27] Kaufman L., Rousseeuw P. J., Finding groups in data: An introduction to cluster analysis, John Wiley Sons Inc., New York, 1990, 342 pp. | DOI
[28] Fisher R. A., “The use of multiple measurements in taxonomic problems”, Annals of Eugenics, 7 (1936), 179–188 | DOI
[29] Snell-Hornby M., Translation studies: An integrated approach, John Benjamins Publ., Amsterdam, 1988, 172 pp.