@article{VSPUI_2024_20_4_a3,
author = {A. A. Moldovyan and N. A. Moldovyan},
title = {Parameterized unified method for setting vector finite fields for multivariate cryptography},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {479--486},
year = {2024},
volume = {20},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a3/}
}
TY - JOUR AU - A. A. Moldovyan AU - N. A. Moldovyan TI - Parameterized unified method for setting vector finite fields for multivariate cryptography JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2024 SP - 479 EP - 486 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a3/ LA - en ID - VSPUI_2024_20_4_a3 ER -
%0 Journal Article %A A. A. Moldovyan %A N. A. Moldovyan %T Parameterized unified method for setting vector finite fields for multivariate cryptography %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2024 %P 479-486 %V 20 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a3/ %G en %F VSPUI_2024_20_4_a3
A. A. Moldovyan; N. A. Moldovyan. Parameterized unified method for setting vector finite fields for multivariate cryptography. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 4, pp. 479-486. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a3/
[1] Alagic G., Cooper D., Dang Q., Dang T., Kelsey J., Lichtinger J., Liu Y., Miller C., Moody D., Peralta R., Perlner R., Robinson A., Smith-Tone D., Apon D., Status report on the third round of the NIST post-quantum cryptography standardization process, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology Publ., Gaithersburg, MD, 2022, 90 pp. | DOI
[2] “Post-Quantum Cryptography”, $13^{ th }$ International Workshop, PQCrypto 2022 (Virtual Event, September 28–30, 2022. Proceedings), Lecture Notes in Computer Science, 13512, Springer Verlag, New York, 2022, 523 pp.
[3] Ding J., Petzoldt A., Schmidt D. S., Multivariate public key cryptosystems, Advances in information security, 80, Springer, New York, 2020, 253 pp. | DOI
[4] Moldovyan A. A., Moldovyan N. A., “Vector finite fields of characteristic two as algebraic support of multivariate cryptography”, Computer Science Journal of Moldova, 32:1 (94) (2024), 46–60 | DOI
[5] Moldovyan N. A., Moldovyanu P. A., “Vector form of the finite fields $GF\left(p^m\right)$”, Bulletin of Academy of Sciences of Moldova. Mathematics, 2009, no. 3 (61), 57–63
[6] Moldovyan D. N., “A unified method for setting finite none-commutative associative algebras and their properties”, Quasigroups and Related Systems, 27:2 (2019), 293–308
[7] Moldovyan N. A., “A unified method for setting finite non-commutative associative algebras and their properties”, Quasigroups and Related Systems, 26:2 (2018), 263–270
[8] Moldovyan N. A., Moldovyan D. N., A novel method for developing post-quantum cryptoschemes and a practical signature algorithm, Applied Computing and Informatics, 2021 | DOI
[9] Ding J., Petzoldt A., “Current state of multivariate cryptography”, IEEE Security and Privacy Magazine, 15:4 (2017), 28–36
[10] Shuaiting Q., Wenbao H., Li Y., Luyao J., “Construction of extended multivariate public key cryptosystems”, International Journal of Network Security, 18:1 (2016), 60–67
[11] Faugére J.-C., “A new efficient algorithm for computing Grőbner basis (F4)”, Journal of Pure Appl. Algebra, 139:1–3 (1999), 61–88
[12] Faugére J.-C., “A new efficient algorithm for computing Grőbner basis without reduction to zero (F5)”, Proceedings of the International Symposium on Symbolic and Algebraic Computation, 2002, 75–83