Parameterized unified method for setting vector finite fields for multivariate cryptography
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 4, pp. 479-486
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of attractive paradigms of the public key multivariate cryptography is connected with application of the exponentiation operations in vector finite fields of different dimensions. The computationally heuristic method of specifying vector finite fields with a large number of implemented modifications is a problematic area of this paradigm. In this regard, a formalized method for the unified construction of vector finite fields is proposed.
Keywords: finite associative algebra, commutative algebra, vector finite field, power polynomials, exponentiation operation, post-quantum cryptography, multivariate cryptography.
@article{VSPUI_2024_20_4_a3,
     author = {A. A. Moldovyan and N. A. Moldovyan},
     title = {Parameterized unified method for setting vector finite fields for multivariate cryptography},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {479--486},
     year = {2024},
     volume = {20},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a3/}
}
TY  - JOUR
AU  - A. A. Moldovyan
AU  - N. A. Moldovyan
TI  - Parameterized unified method for setting vector finite fields for multivariate cryptography
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 479
EP  - 486
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a3/
LA  - en
ID  - VSPUI_2024_20_4_a3
ER  - 
%0 Journal Article
%A A. A. Moldovyan
%A N. A. Moldovyan
%T Parameterized unified method for setting vector finite fields for multivariate cryptography
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 479-486
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a3/
%G en
%F VSPUI_2024_20_4_a3
A. A. Moldovyan; N. A. Moldovyan. Parameterized unified method for setting vector finite fields for multivariate cryptography. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 4, pp. 479-486. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a3/

[1] Alagic G., Cooper D., Dang Q., Dang T., Kelsey J., Lichtinger J., Liu Y., Miller C., Moody D., Peralta R., Perlner R., Robinson A., Smith-Tone D., Apon D., Status report on the third round of the NIST post-quantum cryptography standardization process, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology Publ., Gaithersburg, MD, 2022, 90 pp. | DOI

[2] “Post-Quantum Cryptography”, $13^{ th }$ International Workshop, PQCrypto 2022 (Virtual Event, September 28–30, 2022. Proceedings), Lecture Notes in Computer Science, 13512, Springer Verlag, New York, 2022, 523 pp.

[3] Ding J., Petzoldt A., Schmidt D. S., Multivariate public key cryptosystems, Advances in information security, 80, Springer, New York, 2020, 253 pp. | DOI

[4] Moldovyan A. A., Moldovyan N. A., “Vector finite fields of characteristic two as algebraic support of multivariate cryptography”, Computer Science Journal of Moldova, 32:1 (94) (2024), 46–60 | DOI

[5] Moldovyan N. A., Moldovyanu P. A., “Vector form of the finite fields $GF\left(p^m\right)$”, Bulletin of Academy of Sciences of Moldova. Mathematics, 2009, no. 3 (61), 57–63

[6] Moldovyan D. N., “A unified method for setting finite none-commutative associative algebras and their properties”, Quasigroups and Related Systems, 27:2 (2019), 293–308

[7] Moldovyan N. A., “A unified method for setting finite non-commutative associative algebras and their properties”, Quasigroups and Related Systems, 26:2 (2018), 263–270

[8] Moldovyan N. A., Moldovyan D. N., A novel method for developing post-quantum cryptoschemes and a practical signature algorithm, Applied Computing and Informatics, 2021 | DOI

[9] Ding J., Petzoldt A., “Current state of multivariate cryptography”, IEEE Security and Privacy Magazine, 15:4 (2017), 28–36

[10] Shuaiting Q., Wenbao H., Li Y., Luyao J., “Construction of extended multivariate public key cryptosystems”, International Journal of Network Security, 18:1 (2016), 60–67

[11] Faugére J.-C., “A new efficient algorithm for computing Grőbner basis (F4)”, Journal of Pure Appl. Algebra, 139:1–3 (1999), 61–88

[12] Faugére J.-C., “A new efficient algorithm for computing Grőbner basis without reduction to zero (F5)”, Proceedings of the International Symposium on Symbolic and Algebraic Computation, 2002, 75–83