Comparison transfer matrix methods and scattering matrix method for investigation the optical properties of multilayer structures
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 4, pp. 432-445
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article presents an analysis of transfer matrix method (TMM) and scattering matrix method (SMM) for determining reflection and transmission coefficients of thin films. Investigated single layer structures of semiconductor materials (Si, Ge, GaAs), noble metals (Ag, Au, Cu) and multilayer structure of Si. Numeric results were getting in two diapason wavelengths: $\lambda=0.2067$$0.8267$ $\mu$m and $\lambda=0.2$$20$ $\mu$m. In this work obtained with TMM and SMM the reflection and transmission coefficient of layer structures. Numerical results of reflection coefficients of all investigation structures were exactly match with literature data. But results we got for the transmission coefficients did not match of literature data for the both of method. This mismatch is investigated, as we assume from some of normalization coefficient, corresponding a refractive index of right side of medium which we didn't take into account.
Keywords: transfer matrix methods, scattering matrix method, layer structures.
Mots-clés : reflection coefficient, transmission coefficient
@article{VSPUI_2024_20_4_a0,
     author = {N. V. Egorov and A. G. Fedorov and V. V. Trofimov},
     title = {Comparison transfer matrix methods and scattering matrix method for investigation the optical properties of multilayer structures},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {432--445},
     year = {2024},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a0/}
}
TY  - JOUR
AU  - N. V. Egorov
AU  - A. G. Fedorov
AU  - V. V. Trofimov
TI  - Comparison transfer matrix methods and scattering matrix method for investigation the optical properties of multilayer structures
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 432
EP  - 445
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a0/
LA  - ru
ID  - VSPUI_2024_20_4_a0
ER  - 
%0 Journal Article
%A N. V. Egorov
%A A. G. Fedorov
%A V. V. Trofimov
%T Comparison transfer matrix methods and scattering matrix method for investigation the optical properties of multilayer structures
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 432-445
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a0/
%G ru
%F VSPUI_2024_20_4_a0
N. V. Egorov; A. G. Fedorov; V. V. Trofimov. Comparison transfer matrix methods and scattering matrix method for investigation the optical properties of multilayer structures. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 4, pp. 432-445. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_4_a0/

[1] Egorov N. V., Antonova L. I., Karpov A. G., Trofimov V. V., Fedorov A. G., “Theoretical and experimental evaluation of the electrical parameters of a holographic microscope”, Journal of Surface Investigation. $X$-ray, Synchrotron and Neutron Techniques, 14 (2020), 1061–1065 | DOI

[2] Egorov N. V., Karpov A. G., Antonova L. I., Fedorov A. G., Trofimov V. V., Antonov S. R., “Technique for investigating the spatial structure of thin films at a nanolevel”, Journal of Surface Investigation. $X$-ray, Synchrotron and Neutron Techniques, 5:5 (2011), 992–995 | DOI

[3] Abeles F., “Sur la propagation des ondes electromagnetiques dans les milieux stratifies”, Ann. Phys. (Paris), 1948, no. 3, 504–520 | DOI

[4] Koji O., Hatsuo I., “Matrix formalism for calculation of electric field intensity of light in stratified multilayered films”, Applied Optics, 29:13 (1990), 1952–1959 | DOI

[5] Charalambos C. K., Dimitrios I. S., “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference”, Applied Optics, 41:19 (2002), 3978–3987 | DOI

[6] Aspnes D. E., Studna A. A., “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV”, Physical Review B, 27 (1983), 985–1009 | DOI

[7] Polyanskiy M. N., “Refractiveindex.info database of optical constants”, Sci. Data, 11 (2024), 94 | DOI

[8] Johnson P. B., Christy R. W., “Optical constants of the noble metals”, Physical Review B, 6:12 (1972), 4370–4379 | DOI

[9] Shkondin E., Takayama O., Aryaee P. M. E., Liu P., Larsen P. V., Mar M. D., Jensen F., Lavrinenko A. V., “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials”, Opt. Mater. Express, 7 (2017), 1606–1627 | DOI

[10] Ciesielski A., Skowronski L., Trzinski M., Szoplik T., “Controlling the optical parameters of self-assembled silver films with wetting layers and annealing”, Appl. Surf. Sci., 421B (2017), 349–356 | DOI

[11] Optical constants, Contractor Report CRDC-CR-85034, Querry M. R., 1985

[12] Amotchkina T., Trubetskov M., Hahner D., Pervak V., “Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings”, Applied Optics, 59 (2020), A40–A47 | DOI

[13] Olmon R. L., Slovick B., Johnson T. W., Shelton D., Oh S.-H., Boreman G. D., Raschke M. B., “Optical dielectric function of gold”, Physical Review, B86 (2012), 235147 | DOI

[14] Papatryfonos K., Angelova T., Brimont A., Reid B., Guldin S., Smith P. R., Tang M., Li K., Seeds A. J., Liu H., Selviah D. R., “Refractive indices of MBE-grown AlxGa1-xAs ternary alloys in the transparent wavelength region”, AIP Adv., 11 (2021), 025327 | DOI

[15] Dyakov S. A., Tolmachev V. A., Astrova E. V., Tikhodeev S. G., Timoshenko V. Yu., Perova T. S., “Numerical methods for calculation of optical properties of layered structures”, Proceedings of SPIE 7521. International Conference on Micro- and Nano-Electronics, 2009, 75210G | DOI

[16] Yuk Kei Ko D., Inkson J. C., “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems”, Physical Review B, 38:14 (1988), 9945–9951 | DOI

[17] Lifeng Li., “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings”, Journal of Opt. Soc. Amer. A, 13:5 (1996), 1024–1035 | DOI

[18] Tikhodeev S. G., Yablonskii A. L., Muljarov E. A., Gippius N. A., Teruya I., “Quasiguided modes and optical properties of photonic crystal slabs”, Physical Review B, 66 (2002), 045102(17) | DOI

[19] Whittaker D. M., “Scattering-matrix treatment of patterned multilayer photonic structures”, Physical Review B, 60:4 (1989), 2610–2618 | DOI