On the boundary control problem for a pseudo-parabolic equation with involution
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 3, pp. 416-427
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Previously, some control problems for the pseudo-parabolic equation independent of involution were considered. In this paper, we consider a boundary control problem associated with a pseudo-parabolic equation with involution in a bounded one-dimensional domain. On the part of the border of the considered domain, the value of the solution with control function is given. Restrictions on the control are given in such a way that the average value of the solution in the considered domain gets a given value. The problem given by the method of separation of variables is reduced to the Volterra integral equation of the second kind. The existence of the control function was proved by the Laplace transform method.
Keywords: boundary problem, Volterra integral equation, control function, involution.
Mots-clés : Laplace transform
@article{VSPUI_2024_20_3_a8,
     author = {F. N. Dekhkonov},
     title = {On the boundary control problem for a pseudo-parabolic equation with involution},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {416--427},
     year = {2024},
     volume = {20},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a8/}
}
TY  - JOUR
AU  - F. N. Dekhkonov
TI  - On the boundary control problem for a pseudo-parabolic equation with involution
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 416
EP  - 427
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a8/
LA  - en
ID  - VSPUI_2024_20_3_a8
ER  - 
%0 Journal Article
%A F. N. Dekhkonov
%T On the boundary control problem for a pseudo-parabolic equation with involution
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 416-427
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a8/
%G en
%F VSPUI_2024_20_3_a8
F. N. Dekhkonov. On the boundary control problem for a pseudo-parabolic equation with involution. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 3, pp. 416-427. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a8/

[1] A. Cabada, F. A. F. Tojo, “General results for differential equations with involutions”, Differential Equations with Involutions, Atlantis Press, Paris, 2015, 17–23 | DOI | MR

[2] T. Carleman, “Sur la theorie des equations integrales et ses applications”, Verhandl des internat Mathem. Kongr., v. I, Zurich, 1932, 138–151 | MR

[3] J. Wiener, Generalized solutions of functional-dierential equations, World Scientic Publishing, New Jersey, 1993, 424 pp. | MR

[4] F. N. Dekhkonov, “On a boundary control problem for a pseudo-parabolic equation”, Communications in Analysis and Mechanics, 15:2 (2023), 289–299 | DOI | MR

[5] Z. K. Fayazova, “Boundary control for a psevdo-parabolic equation”, Mathematical Notes of NEFU, 12 (2018), 40–45 | DOI

[6] B. D. Coleman, W. Noll, “An approximation theorem for functionals, with applications in continuum mechanics”, Archive for Rational Mechanics and Analysis, 6 (1960), 355–370 | DOI | MR

[7] P. Chen, M. Gurtin, “On a theory of heat conduction involving two temperatures”, Journal of Applied Mathematics and Physics (ZAMP), 19 (1968), 614–627 | DOI

[8] E. A. Miline, “The diffusion of imprisoned radiation through a gas”, Journal of the London Mathematical Society, 1 (1926), 40–51 | DOI | MR

[9] L. W. White, “Controllability properties of pseudo-parabolic boundary control problems”, SIAM Journal on Control and Optimization, 18 (1980), 534–539 | DOI | MR

[10] B. D. Coleman, R. J. Duffin, V. J. Mizel, “Instability, uniqueness, and nonexistence theorems for the equation on a strip”, Archive for Rational Mechanics and Analysis, 19 (1965), 100–116 | DOI | MR

[11] L. W. White, “Point control of pseudo-parabolic problems”, Journal of Differential Equations, 42 (1981), 366–374 | DOI | MR

[12] S. I. Lyashko, “On the solvability of pseudo-parabolic equations”, Soviet Mathematics, 29 (1985), 99–101 | MR

[13] H. O. Fattorini, “Time-optimal control of solutions of operational differential equations”, SIAM Journal on Control and Optimization, 2 (1964), 49–65 | MR

[14] A. Friedman, “Optimal control for parabolic equations”, Journal of Mathematical Analysis and Applications, 18 (1967), 479–491 | DOI

[15] Yu. V. Egorov, “Optimal control in Banach spaces”, Doklady Akademii nauk SSSR, 150 (1963), 241–244 (In Russian) | MR

[16] S. Albeverio, Sh. A. Alimov, “On one time-optimal control problem associated with the heat exchange process”, Applied Mathematics and Optimization, 57 (2008), 58–68 | DOI | MR

[17] F. N. Dekhkonov, “On the control problem associated with the heating process”, Mathematical notes of NEFU, 29:4 (2022), 62–71 | DOI | MR

[18] Z. K. Fayazova, “Boundary control of the heat transfer process in the space”, Russian Mathematics, 63 (2019), 71–79 | DOI | MR

[19] F. N. Dekhkonov, E. I. Kuchkorov, “On the time-optimal control problem associated with the heating process of a thin rod”, Lobachevskii Journal of Mathematics, 44:3 (2023), 1134–1144 | DOI | MR

[20] F. N. Dekhkonov, “Boundary control problem for the heat transfer equation associated with heating process of a rod”, Bulletin of the Karaganda University. Mathematics Series, 110:2 (2023), 63–71 | DOI | MR

[21] F. N. Dekhkonov, “On the time-optimal control problem for a heat equation”, Bulletin of the Karaganda University. Mathematics Series, 111:3 (2023), 28–38 | DOI | MR

[22] J. L. Lions, Contróle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Gauthier-Villars Publ, Paris, 1968, 426 pp. | MR

[23] A. V. Fursikov, Optimal control of distributed systems, theory and applications, Translations of Math. Monographs, American Mathematical Society Publ., Providence, Rhode Island, 2000, 305 pp. | MR

[24] Altmüller A., Grüne L., “Distributed and boundary model predictive control for the heat equation”, GAMM-Mitteilungen, 35 (2012), 131–145 | DOI | MR

[25] S. Dubljevic, P. D. Christofides, “Predictive control of parabolic PDEs with boundary control actuation”, Chem. Eng. Sci., 61 (2006), 6239–6248 | DOI

[26] L. V. Kritskov, A. M. Sarsenbi, “Riesz basis property of system of root functions of second-order differential operator with involution”, Differential Equations, 53 (2017), 33–46 | DOI | MR

[27] M. S. Burlutskaya, A. P. Khromov, “Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution”, Comput. Math. Math. Phys., 51 (2011), 2102–2114 | DOI | MR

[28] E. Mussirepova, A. Sarsenbi, A. Sarsenbi, “The inverse problem for the heat equation with reflection of the argument and with a complex coefficient”, Boundary Value Problems, 1 (2022), 99 | DOI | MR

[29] A. Kopzhassarova, A. Sarsenbi, “Basis properties of eigenfunctions of second-order differential operators with involution”, Abstract and Applied Analysis, 2012 (2012), 576843, 6 pp. | DOI | MR

[30] B. Ahmad, A. Alsaedi, M. Kirane, R. Tapdigoglu, “An inverse problem for space and time fractional evolution equations with an involution perturbation”, Quaestiones Mathematicae, 40 (2017), 151–160 | DOI | MR

[31] F. N. Dekhkonov, “On the control problem associated with a pseudo-parabolic type equation in an one-dimensional domain”, International Journal of Applied Mathematics, 37:1 (2024), 109–118 | DOI | MR

[32] A. N. Tikhonov, A. A. Samarsky, Equations of mathematical physics, Nauka, M., 1966, 742 pp. (In Russian) | MR