Common fixed point results: New developments on commuting mappings and application in dynamic programming
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 3, pp. 366-375
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on a class of semicontinuous functions, we prove a common fixed point theorem for a pair of commuting mappings. As a consequence, we give another common fixed point for the so-called weakly contractive mappings of type $E_T$. The proven results are established in the setting of bounded metric spaces without using neither the compactness nor the uniform convexity. Some examples are built to demonstrate the superiority of the obtained results compared to the existing ones in the literature. Furthermore, an application to a system of functional equations arising in dynamic programming is given.
Keywords: сommon fixed point, weakly contractive maps of type $E_T$, commuting maps, compactness, uniform convexity.
@article{VSPUI_2024_20_3_a4,
     author = {Y. Touail},
     title = {Common fixed point results: {New} developments on commuting mappings and application in dynamic programming},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {366--375},
     year = {2024},
     volume = {20},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a4/}
}
TY  - JOUR
AU  - Y. Touail
TI  - Common fixed point results: New developments on commuting mappings and application in dynamic programming
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 366
EP  - 375
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a4/
LA  - en
ID  - VSPUI_2024_20_3_a4
ER  - 
%0 Journal Article
%A Y. Touail
%T Common fixed point results: New developments on commuting mappings and application in dynamic programming
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 366-375
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a4/
%G en
%F VSPUI_2024_20_3_a4
Y. Touail. Common fixed point results: New developments on commuting mappings and application in dynamic programming. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 3, pp. 366-375. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a4/

[1] V. V. Nemytzki, “The fixed point method in analysis”, Russian Mathematical Surveys, 1 (1936), 141–174 (In Russian)

[2] M. Edelstein, “On fixed and periodic points under contractive mappings”, Journal of the London Mathematical Society, 37 (1962), 74–79 | DOI | MR | Zbl

[3] F. E. Browder, “Nonexpansive nonlinear operators in a Banach space”, Proceedings of the National Academy of Sciences U. S. A., 54 (1965), 1041–1044 | DOI | MR | Zbl

[4] D. Göhde, “Zum prinzip der kontraktiven abbildung”, Mathematische Nachrichten, 30 (1965), 251–258 | DOI | MR | Zbl

[5] W. A. Kirk, “A fixed point theorem for mappings which do not increase distances”, American Mathematical Monthly, 72 (1965), 1004–1006 | DOI | MR | Zbl

[6] J. A. Clarkson, “Uniformly convex spaces”, Transactions of the American Mathematical Society, 40 (1936), 396–414 | DOI | MR | Zbl

[7] G. Jungck, “Commuting mappings, fixed points”, American Mathematical Monthly, 83 (1976), 261–263 | DOI | MR | Zbl

[8] S. G. Matthews, “Partial metric topology”, Annals of the New York Academy of Sciences, 728 (1994), 183–197 | DOI | MR | Zbl

[9] Ćirić L., Samet B., Aydi H., Vetro C., “Common fixed points of generalized contractions on partial metric spaces and an application”, Applied Mathematics and Computation, 218 (2011), 2398–2406 | DOI | MR

[10] P. Waszkiewicz, “Partial metrisability of continuous posets”, Mathematical Structures in Computer Science, 16 (2006), 359–372 | DOI | MR | Zbl

[11] Y. Touail, A. Jaid, D. El Moutawakil, “New contribution in fixed point theory via an auxiliary function with an application”, Ricerche di Matematica, 72 (2021), 181–191 | DOI | MR

[12] Y. Touail, D. El Moutawakil, “Some new common fixed point theorems for contractive selfmappings with applications”, Asian-European Journal of Mathematics, 15 (2022), 1–14 | DOI | MR

[13] Y. Touail, D. El Moutawakil, S. Bennani, “Fixed point theorems for contractive selfmappings of a bounded metric space”, Journal of Function Spaces, 2019 (2019), 1–3 | DOI | MR

[14] Y. Touail, D. El Moutawakil, “Fixed point results for new type of multivalued mappings in bounded metric spaces with an application”, Ricerche di Matematica, 71 (2020), 315–323 | DOI | MR

[15] Y. Touail, D. El Moutawakil, “New common fixed point theorems for contractive self mappings and an application to nonlinear differential equations”, International Journal of Nonlinear Analysis and Applications, 12 (2021), 903–911 | MR

[16] Y. Touail, D. El Moutawakil, “Fixed point theorems for new contractions with application in dynamic programming”, Vestnik of Saint Petersburg University. Mathematics, 8 (2021), 206–212 | DOI | MR | Zbl

[17] Y. Touail, D. El Moutawakil, “Fixed point theorems on orthogonal complete metric spaces with an application”, International Journal of Nonlinear Analysis and Applications, 12 (2021), 1801–1809 | MR

[18] Ya. I. Alber, S. Guerre-Delabriere, “Principle of weakly contractive maps in Hilbert spaces”, Advances and Applications, 98, Birkhaüser Publ., Basel, 1997, 7–22 | MR | Zbl

[19] Bellman R., Dynamic Programming, Princeton University Press, Princeton, 1957, 339 pp. | MR | Zbl

[20] R. Bellman, E. S. Lee, “Functional equations arising in dynamic programming”, Aequationes Mathematicae, 17 (1978), 1–18 | DOI | MR | Zbl

[21] M. Aamri, D. El Moutawakil, “$\tau$-Distance in general topological spaces with application to fixed point theory”, Southwest Journal of Pure and Applied Mathematics, 2 (2003), 1–5 | MR

[22] Y. Touail, “On multivalued $\perp_{\psi F}$-contractions on generalised orthogonal sets with an application to integral inclusions”, Issues of Analysis, 11 (2022), 109–124 | MR | Zbl

[23] Y. Touail, D. El Moutawakil, “$\perp_{\psi F}$-Contractions and some fixed point results on generalized orthogonal sets”, Rendiconti del Circolo Matematico di Palermo. Series 2, 70 (2021), 1459–1472 | DOI | MR | Zbl