Analysis of research into the mathematical foundations of model-based systems engineering
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 3, pp. 350-365 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article provides an analysis of research into the mathematical foundations of model-based systems engineering (MBSE, Model-Based Systems Engineering). Both the classical mathematical theory of Wymore's system design and modern research are considered, in particular, the formalization of the semantics of the SysML language using automata theory, the use of category theory as a formal mathematical basis for model-based system design, the study of the possibilities of combining the theoretical basis of Wymore's systems and the universal Discrete Event System Specification (DEVS) modeling formalism.
Keywords: systems engineering, model-based systems engineering, model-based systems engineering, finite state machines, semantics of the SysML language, tripartite theory, DEVS modeling, category theory in model-based systems engineering.
@article{VSPUI_2024_20_3_a3,
     author = {V. A. Sukhomlin},
     title = {Analysis of research into the mathematical foundations of model-based systems engineering},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {350--365},
     year = {2024},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a3/}
}
TY  - JOUR
AU  - V. A. Sukhomlin
TI  - Analysis of research into the mathematical foundations of model-based systems engineering
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 350
EP  - 365
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a3/
LA  - ru
ID  - VSPUI_2024_20_3_a3
ER  - 
%0 Journal Article
%A V. A. Sukhomlin
%T Analysis of research into the mathematical foundations of model-based systems engineering
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 350-365
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a3/
%G ru
%F VSPUI_2024_20_3_a3
V. A. Sukhomlin. Analysis of research into the mathematical foundations of model-based systems engineering. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 3, pp. 350-365. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a3/

[1] Bogdanov A. A., Tectology: General organizational science, In 2 books, v. 1, Ekonomika Publ., M., 1989, 304 pp. (In Russian)

[2] Wiener N., Cybernetics, or communication and control in the animal and the machine, Ffiley, New York, 1948, 231 pp. | MR

[3] Bertalanfi L. fon, “General theory of systems – survey of problem and results”, Sistematic investigations, Nauka Publ., M., 1969, 34–35 (In Russian)

[4] Mesarovic M., Takahara Y., General systems theory: Mathematical foundations, Academic Press, London, 1975, 268 pp. | MR | Zbl

[5] Mesarovic M., Takahara Y., Abstract systems theory, Springer, New York, 1989, 439 pp. | MR | Zbl

[6] Wymore A. W., A mathematical theory of systems engineering: the elements, John Wiley Sons, New York, 1967, 353 pp. | MR

[7] Wymore A. W., Model-based systems engineering, CRC Press, Inc., Boca Raton, 1993, 710 pp.

[8] Wach P., Zeigler B. P., Salado A., “Conjoining Wymore's systems theoretic framework and the DEVS modeling formalism: toward scientific foundations for MBSE”, Appl. Sci., 2021, no. 11, 4936 | DOI

[9] Salado A., Wach P., “Interpretation discrepancies of SysML state machine: An initial investigation”, Proceedings of the 18$^{\rm th}$ Annual Conference on Systems Engineering Research (CSER) (Redondo Beach, CA, USA, 2020, October 8–10), 361–370

[10] Zeigler B. P., Mittal S., Traore M. K., “MBSE with/out simulation: State of the art and way forward”, Systems, 6:40 (2018), 1–18 | DOI

[11] Future of systems engineering (FuSE), INCOSE (accessed: June 9, 2020) https://www.incose.org/about-systems-engineering/fuse

[12] Rousseau D., “The theoretical foundation(s) for systems engineering? Response to Yearworth”, Syst. Res. Behav. Sci., 37 (2020), 188–191 | DOI

[13] Workshop: Investigation of the theoretical foundations in systems engineering, NSF (accessed: April 9, 2024) https://www.nsf.gov/awardsearch/showAward?AWD_ID=1548480

[14] Workshop. The science of systems engineering, NSF (accessed: June 9, 2020) https://nsf.gov/awardsearch/showAward?AWD_ID=1447031

[15] Hammami O., Edmonson W., “THEFOSE – theoretical foundations of system engineering: A first feedback”, Proceedings of the 2015 IEEE International Symposium on Systems Engineering (ISSE) (Rome, Italy, 2015, September 28–30), 370–374

[16] Collopy P. D., “Systems engineering theory: What needs to be done”, Proceedings of the 2015 Annual IEEE Systems Conference (SysCon) (Vancouver, Canada, 2015, April 13–16), 536–541

[17] INCOSE system engineering vision 2025 (July 2014), INCOSE (accessed: November 12, 2020) https://www.incose.org/docs/default-source/aboutse/se-vision-2025.pdf?sfvrsn=4&sfvrsn=4

[18] Estefan J. A., “Survey of model-based systems engineering (MBSE) methodologies”, INCOSE MBSE Focus Group, 2008 (accessed: November 14, 2023) https://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf

[19] Wymore A. W., “Systems movement: autobiographical retrospectives”, International Journal of General Systems, 33:6 (2004), 593–610 | DOI | MR | Zbl

[20] Wymore A. W., “Model-based systems engineering: a quick overview”, INCOSE International Workshop (Albuquerque, NM, 2007, January 25)

[21] Wymore A. W., “Applications of mathematical system theory to system design, modelling and simulation”, Winter Simulation Conference Proceedings, 1981, 209–219

[22] Ören T., Zeigler B. P., “System theoretic foundations of modeling and simulation: a historic perspective and the legacy of a Wayne Wymore”, Simulation, 88 (2012), 1033–1046 | DOI | MR

[23] System modeling language, , Object Management Group, 2016 (accessed: December 19, 2016) http://www.omgsysml.org/

[24] Friedenthal S., Moore A., Steiner R., A practical guide to SysML, 3$^{\rm rd}$ ed., Morgan Kaufman/Elsevier, New York, 2015, 23 pp.

[25] Vaneman W. K., “Enhancing model-based systems engineering with the lifecycle modeling language”, 2016 Annual IEEE Systems Conference (SysCon) (Orlando, FL, USA), IEEE, 2016, 1–7

[26] Graves H., Yvonne B., “Using formal methods with SysML in aerospace design and engineering”, Annals of Mathematics and Artificial Intelligence, 63:1 (2011), 53–102 | DOI | MR | Zbl

[27] Wacha P., Saladoa A., “Can Wymore's mathematical framework underpin SysML? An initial investigation of state machines”, Procedia Computer Science, 153 (2019), 242–249 | DOI

[28] Mabrok M. A., Ryan M. J., “Category theory as a formal mathematical foundation for model-based systems engineering”, Appl. Math. Inf. Sci., 11:1 (2017), 43–51 | DOI

[29] Fokkinga M. M., A gentle introduction to category theory – the calculational approach, University of Utrecht, Utrecht, 1992, 72 pp.

[30] Hoare C. A. R., “Notes on an approach to category theory for computer scientists”, Constructive Methods in Computing Science, NATO ASI Series, 55, Springer, Berlin–Heidelberg, 1989, 245–305 | MR

[31] Scott D. S., “Relating theories of the lambda calculus”, H. B. Curry: Essays on combinatory logic, lambda calculus and formalism, Academic Press, New York, 1980, 403–450 | MR

[32] Rydeheard D. E., Burstall R. M., Computational category theory, Prentice Hall, Englewood Cliffs, 1988, 257 pp. | MR | Zbl

[33] Pierce B. C., Basic category theory for computer scientists, MIT Press, Cambridge, 1991, 114 pp. | MR

[34] Reed G. M., Roscoe A., Wachter R. F., Topology and category theory in computer science, Oxford University Press, 1991, 402 pp. | MR | Zbl

[35] Herring J., Egenhofer M. J., Frank A. U., “Using category theory to model gis applications”, 4$^{\rm th}$ International Symposium on Spatial Data Handling, v. 2, 1990, 820–829

[36] Rising III H., Tabatabai A., Application of category theory and cognitive science to design of semantic descriptions for content data, US Patent 7,319,951, January 15, 2008

[37] Williamson K., Healy M., Barker R., “Industrial applications of software synthesis via category theorycase studies using specware”, Automated Software Engineering, 8:1 (2001), 7–30 | DOI | Zbl

[38] Fiadeiro J. L., Categories for software engineering, Springer, Berlin, 2005, 250 pp. | DOI | Zbl

[39] Kovalyov S., “Modeling aspects by category theory”, Proceedings 9$^{\rm th}$ Workshop on Foundations of Aspect-Oriented Languages (Rennes, France), 2010, 63–68

[40] Diskin Z., Maibaum T., “Category theory and model-driven engineering: from formal semantics to design patterns and beyond”, Proceedings of ACCAT 2012, EPTCS, 93, 2012, 1–21 | DOI

[41] Luzeaux D., “A formal foundation of systems engineering”, Complex Systems Design Management, Springer, Cham, 2015, 133–148 | DOI

[42] Vidalie J., Category theory for consistency between multilevel system modeling (MBSE) and safety (MBSA), Universite Paris-Saclay, Paris, 2023, 203 pp.

[43] Atkinson C., Kuhne T., “Model-driven development: a metamodeling foundation”, IEEE Software, 20:5 (2003), 36–41 | DOI

[44] Spivak D. I., Kent R. E., “Ologs: a categorical framework for knowledge representation”, PLoS One, 7:1 (2012), e24274 | DOI

[45] Engel A., Mordecai Y., “Systems engineering using category theory”, Systems Science for Engineers and Scholars, 2024, 63–68 | DOI

[46] Breiner S., Subrahmanian E., Sriram R. D., “Category theory”, Handbook of Model-Based Systems Engineering, Springer, Cham, 2022, 1–41 | DOI

[47] Myers D. J., Categorical systems — theory, 2023 (accessed: November 14, 2023) http://davidjaz.com/Papers/DynamicalBook.pdf

[48] NAFEMS: Systems modeling $\$ simulation working group (accessed: April 13, 2021) https://www.nafems.org/community/working-groups/systems-modeling-simulation/