Direct method for solving systems of second order ordinary differential equations
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 3, pp. 324-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper a direct solver for systems of structurally partitioned second order differential equations is proposed. a general scheme of the method algorithmically oriented towards the particular structure of the system is presented. With the last stage reuse (also known as FSAL approach) an embedded pair of sixth and fourth order methods with just six stages is constructed, which provides an easy step-size control. Numerical comparison is made with the well-known Dormand — Prince method 5(4)7F having the same computation cost, showing the advantage of the proposed method.
Keywords: Runge — Kutta methods, second order equations, structurall partitioned system, sixth order.
@article{VSPUI_2024_20_3_a1,
     author = {I. V. Olemskoy and A. S. Eremin and A. V. Matrosov},
     title = {Direct method for solving systems of second order ordinary differential equations},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {324--334},
     year = {2024},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a1/}
}
TY  - JOUR
AU  - I. V. Olemskoy
AU  - A. S. Eremin
AU  - A. V. Matrosov
TI  - Direct method for solving systems of second order ordinary differential equations
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 324
EP  - 334
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a1/
LA  - ru
ID  - VSPUI_2024_20_3_a1
ER  - 
%0 Journal Article
%A I. V. Olemskoy
%A A. S. Eremin
%A A. V. Matrosov
%T Direct method for solving systems of second order ordinary differential equations
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 324-334
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a1/
%G ru
%F VSPUI_2024_20_3_a1
I. V. Olemskoy; A. S. Eremin; A. V. Matrosov. Direct method for solving systems of second order ordinary differential equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 3, pp. 324-334. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a1/

[1] I. V. Olemskoy, “Structural approach to the design of explicit one-stage methods”, Computational Mathematics and Mathematical Physics, 43:7 (2003), 918–931 (In Russian) | MR

[2] I. V. Olemskoy, Integration of structurally partitioned systems of ordinary differential equations, St. Petersburg University Press, St. Petersburg, 2009, 180 pp. (In Russian)

[3] A. S. Eremin, I. V. Olemskoy, “An embedded method for integrating systems of structurally separated ordinary differential equations”, Computational Mathematics and Mathematical Physics, 50:3 (2010), 434–448 (In Russian) | MR | Zbl

[4] I. V. Olemskoy, N. A. Kovrizhnykh, O. S. Firyulina, “Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 502–517 (In Russian) | DOI | MR

[5] I. V. Olemskoy, “An algorithm for finding the structural properties”, Nikolai Efimovich Kirin, Papers dedicated to the memory, eds. V. V. Zhuk, V. F. Kuzutin, Research Institute of Chemistry of St. Petersburg State University Press, St. Petersburg, 2003, 224–250 (In Russian)

[6] I. V. Olemskoy, “Updating of algorithm of allocation structural features”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2006, no. 2, 55–64 (In Russian)

[7] I. V. Olemskoy, “Fifth-order four-stage method for numerical integration of special systems”, Computational Mathematics and Mathematical Physics, 42:8 (2002), 1135–1145 (In Russian) | MR | Zbl

[8] I. V. Olemskoy, “A fifth-order five-stage embedded method of the Dormand — Prince type”, Computational Mathematics and Mathematical Physics, 45:7 (2005), 1140–1150 (In Russian) | MR

[9] I. V. Olemskoy, N. A. Kovrizhnykh, “A family of sixth-order methods with six stages”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:3 (2018), 215–229 (In Russian) | DOI | MR

[10] Eremin A. S., Kovrizhnykh N.A., Olemskoy I. V., “An explicit one-step multischeme sixth order method for systems of special structure”, Applied Mathematics and Computation, 347 (2019), 853–864 | DOI | MR | Zbl

[11] I. V. Olemskoy, A. S. Eremin, “Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 353–369 | DOI | MR

[12] I. V. Olemskoy, A. S. Eremin, O. S. Firyulina, “A nine-parametric family of embedded methods of sixth order”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19:4 (2023), 449–468 (In Russian) | DOI | DOI | MR

[13] O. B. Arushanyan, S. F. Zaletkin, Numerical solution of ordinary differential equations with Fortran, Moscow University Press, M., 1990, 336 pp. (In Russian) | MR

[14] Hairer E., Nørsett S. P., Wanner G., Solving ordinary differential equations, v. I, Nonstiff problems, 2$^{\rm nd}$ ed., 3$^{\rm rd}$ corr. print, Springer-Verlag, Heidelberg–Berlin, 2008, 528 pp. | MR

[15] Dormand J. R., Prince P. J., “A family of embedded Runge — Kutta formulae”, Journal of Computational and Applied Mathematics, 6:1 (1980), 19–26 | DOI | MR | Zbl