Mathematical modeling of bending of a thin orthotropic plate clamped along the contour
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 3, pp. 310-323 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Within the framework of Kirchhoff's theory, a new approach to constructing a solution to the problem of modeling the bending of a thin rectangular orthotropic plate clamped along the contour, which is under the influence of a load normally distributed over its surface, is proposed. the solution to the inhomogeneous biharmonic equation for an orthotropic plate is obtained in the form of a partial sum of a double series in Chebyshev polynomials of the first kind. To find the coefficients in this expansion, the boundary value problem is reduced by the collocation method to a system of linear algebraic equations in matrix form using the properties of these polynomials. Based on matrix and differential transformations, expressions for bending moments and shearing forces are obtained. the results of calculations of the bending of the middle surface of the plate under different loads on the plate are presented, which demonstrate the effectiveness of the proposed approach.
Keywords: collocation method, biharmonic equation, Chebyshev polynomials of the first kind, bending of a thin orthotropic plate.
@article{VSPUI_2024_20_3_a0,
     author = {O. V. Germider and V. N. Popov},
     title = {Mathematical modeling of bending of a thin orthotropic plate clamped along the contour},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {310--323},
     year = {2024},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a0/}
}
TY  - JOUR
AU  - O. V. Germider
AU  - V. N. Popov
TI  - Mathematical modeling of bending of a thin orthotropic plate clamped along the contour
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 310
EP  - 323
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a0/
LA  - ru
ID  - VSPUI_2024_20_3_a0
ER  - 
%0 Journal Article
%A O. V. Germider
%A V. N. Popov
%T Mathematical modeling of bending of a thin orthotropic plate clamped along the contour
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 310-323
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a0/
%G ru
%F VSPUI_2024_20_3_a0
O. V. Germider; V. N. Popov. Mathematical modeling of bending of a thin orthotropic plate clamped along the contour. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 3, pp. 310-323. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a0/

[1] Timoshenko S. P., Woinowsky-Krieger S., Theory of plates and shells, McGraw-Hill Press, New York, 1959, 580 pp. | MR

[2] S. K. Golushko, S. V. Idimeshev, V. P. Shapeev, “Application of collocations and least residuals method to problems of the isotropic plates theory”, Computational Technologies, 18:6 (2013), 31–43 (In Russian)

[3] V. P. Shapeev, L. S. Bryndin, V. A. Belyaev, “The hp-version of the least-squares collocation method with integral collocation for solving a biharmonic equation”, Journal of Samara State Technical University. Series Physical and Mathematical Sciences, 26:3 (2022), 556–572 (In Russian) | DOI | Zbl

[4] D. P. Goloskokov, A. V. Matrosov, “The method of initial functions in calculating the bending of a thin orthotropic plate clamped along the contour”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 330–344 (In Russian) | DOI | MR

[5] Lakshmi G. V. R., Gupta N., “Bending of fully clamped orthotropic rectangular thin plates using finite continuous ridgelet transform”, Materials Today: Proceedings, 47 (2021), 4199–4205 | DOI

[6] Li R., Zhong Y., Tian B., Liu Y., “On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates”, Applied Mathematics Letters, 22 (2009), 1821–1827 | DOI | MR | Zbl

[7] Xu Q., Yang Z., Ullah S., Jinghui Z., Gao Y., “Analytical bending solutions of orthotropic rectangular thin plates with two adjacent edges free and the others clamped or simply supported using finite integral transform method”, Advances in Civil Engineering, 2020, 1–11 | DOI | MR

[8] S. K. Golushko, S. V. Idimeshev, V. P. Shapeev, “Development and application of collocations and least residuals method to the solution of problems in mechanics of anisotropic laminated plates”, Computational Technologies, 19:5 (2014), 24–36 (In Russian) | Zbl

[9] A. M. Khludnev, “Equilibrium problems for elastic plate with thin rigid inclusion and free edge”, Mathematical notes of M. K. Ammosov North-Eastern Federal University, 28:3 (2021), 105–120 (In Russian) | DOI | Zbl

[10] Markous N. A., “Boundary mesh free method with distributed sources for Kirchhoff plate bending problems”, Applied Mathematical Modelling, 94 (2021), 139–151 | DOI | MR | Zbl

[11] Zhou Y., Huang K., “On simplified deformation gradient theory of modified gradient elastic Kirchhoff — Love plate”, European Journal of Mechanics. A Solids, 100 (2023), 105014 | DOI | MR | Zbl

[12] F. L. Bakharev, S. A. Nazarov, “Eigenvalue asymptotics of long Kirchhoff plates with clamped edges”, Matematicheskii Sbornik, 210:4 (2019), 3–26 (In Russian) | DOI | MR | Zbl

[13] S. A. Nazarov, “Homogenization of Kirchhoff plates with oscillating edges and point supports”, Proceedings of Russian Academy of Sciences. Series Mathematical, 84:4 (2020), 110–168 (In Russian) | DOI | MR | Zbl

[14] D. Gomez, S. A. Nazarov, M. E. Perez, “Pointwise fixation along the edge of the Kirchhoff plate”, Transactions of Scientifics seminars of St. Petersburg Department of V. A. Steklov Mathematical Institute of the Russian Academy of Sciences, 493 (2020), 107–137 (In Russian)

[15] D. P. Goloskokov, A. V. Matrosov, I. V. Olemskoy, “Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19:4 (2023), 423–442 (In Russian) | DOI | MR

[16] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Numerical methods, 9$^{\rm th}$ ed., Laboratoria znanii, M., 2020, 636 pp. (In Russian) | MR

[17] Ventsel E., Krauthammer Th., Thin plates and shells. Theory: analysis and applications, CRC Press, Boca Raton, 2001, 688 pp.

[18] Liu S., Trenkler G., “Hadamard, Khatri — Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences, 4:1 (2008), 160–177 | MR | Zbl

[19] Shen J., Tang T., Wang L., Spectral methods, Springer, Heidelberg–Berlin, 2011, 472 pp. | DOI | MR | Zbl

[20] Mason J., Handscomb D., Chebyshev polynomials, CRC Press, Boca Raton, 2003, 360 pp. | MR | Zbl

[21] Laureano R. W., Mantari J. L., Yarasca J., Oktem A. S., Monge J., Zhou X., “Boundary discontinuous Fourier analysis of clamped isotropic and cross-ply laminated plates via Unified Formulation”, Composite Structures, 328 (2024), 117736 | DOI