@article{VSPUI_2024_20_3_a0,
author = {O. V. Germider and V. N. Popov},
title = {Mathematical modeling of bending of a thin orthotropic plate clamped along the contour},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {310--323},
year = {2024},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a0/}
}
TY - JOUR AU - O. V. Germider AU - V. N. Popov TI - Mathematical modeling of bending of a thin orthotropic plate clamped along the contour JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2024 SP - 310 EP - 323 VL - 20 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a0/ LA - ru ID - VSPUI_2024_20_3_a0 ER -
%0 Journal Article %A O. V. Germider %A V. N. Popov %T Mathematical modeling of bending of a thin orthotropic plate clamped along the contour %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2024 %P 310-323 %V 20 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a0/ %G ru %F VSPUI_2024_20_3_a0
O. V. Germider; V. N. Popov. Mathematical modeling of bending of a thin orthotropic plate clamped along the contour. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 3, pp. 310-323. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_3_a0/
[1] Timoshenko S. P., Woinowsky-Krieger S., Theory of plates and shells, McGraw-Hill Press, New York, 1959, 580 pp. | MR
[2] S. K. Golushko, S. V. Idimeshev, V. P. Shapeev, “Application of collocations and least residuals method to problems of the isotropic plates theory”, Computational Technologies, 18:6 (2013), 31–43 (In Russian)
[3] V. P. Shapeev, L. S. Bryndin, V. A. Belyaev, “The hp-version of the least-squares collocation method with integral collocation for solving a biharmonic equation”, Journal of Samara State Technical University. Series Physical and Mathematical Sciences, 26:3 (2022), 556–572 (In Russian) | DOI | Zbl
[4] D. P. Goloskokov, A. V. Matrosov, “The method of initial functions in calculating the bending of a thin orthotropic plate clamped along the contour”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 330–344 (In Russian) | DOI | MR
[5] Lakshmi G. V. R., Gupta N., “Bending of fully clamped orthotropic rectangular thin plates using finite continuous ridgelet transform”, Materials Today: Proceedings, 47 (2021), 4199–4205 | DOI
[6] Li R., Zhong Y., Tian B., Liu Y., “On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates”, Applied Mathematics Letters, 22 (2009), 1821–1827 | DOI | MR | Zbl
[7] Xu Q., Yang Z., Ullah S., Jinghui Z., Gao Y., “Analytical bending solutions of orthotropic rectangular thin plates with two adjacent edges free and the others clamped or simply supported using finite integral transform method”, Advances in Civil Engineering, 2020, 1–11 | DOI | MR
[8] S. K. Golushko, S. V. Idimeshev, V. P. Shapeev, “Development and application of collocations and least residuals method to the solution of problems in mechanics of anisotropic laminated plates”, Computational Technologies, 19:5 (2014), 24–36 (In Russian) | Zbl
[9] A. M. Khludnev, “Equilibrium problems for elastic plate with thin rigid inclusion and free edge”, Mathematical notes of M. K. Ammosov North-Eastern Federal University, 28:3 (2021), 105–120 (In Russian) | DOI | Zbl
[10] Markous N. A., “Boundary mesh free method with distributed sources for Kirchhoff plate bending problems”, Applied Mathematical Modelling, 94 (2021), 139–151 | DOI | MR | Zbl
[11] Zhou Y., Huang K., “On simplified deformation gradient theory of modified gradient elastic Kirchhoff — Love plate”, European Journal of Mechanics. A Solids, 100 (2023), 105014 | DOI | MR | Zbl
[12] F. L. Bakharev, S. A. Nazarov, “Eigenvalue asymptotics of long Kirchhoff plates with clamped edges”, Matematicheskii Sbornik, 210:4 (2019), 3–26 (In Russian) | DOI | MR | Zbl
[13] S. A. Nazarov, “Homogenization of Kirchhoff plates with oscillating edges and point supports”, Proceedings of Russian Academy of Sciences. Series Mathematical, 84:4 (2020), 110–168 (In Russian) | DOI | MR | Zbl
[14] D. Gomez, S. A. Nazarov, M. E. Perez, “Pointwise fixation along the edge of the Kirchhoff plate”, Transactions of Scientifics seminars of St. Petersburg Department of V. A. Steklov Mathematical Institute of the Russian Academy of Sciences, 493 (2020), 107–137 (In Russian)
[15] D. P. Goloskokov, A. V. Matrosov, I. V. Olemskoy, “Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19:4 (2023), 423–442 (In Russian) | DOI | MR
[16] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Numerical methods, 9$^{\rm th}$ ed., Laboratoria znanii, M., 2020, 636 pp. (In Russian) | MR
[17] Ventsel E., Krauthammer Th., Thin plates and shells. Theory: analysis and applications, CRC Press, Boca Raton, 2001, 688 pp.
[18] Liu S., Trenkler G., “Hadamard, Khatri — Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences, 4:1 (2008), 160–177 | MR | Zbl
[19] Shen J., Tang T., Wang L., Spectral methods, Springer, Heidelberg–Berlin, 2011, 472 pp. | DOI | MR | Zbl
[20] Mason J., Handscomb D., Chebyshev polynomials, CRC Press, Boca Raton, 2003, 360 pp. | MR | Zbl
[21] Laureano R. W., Mantari J. L., Yarasca J., Oktem A. S., Monge J., Zhou X., “Boundary discontinuous Fourier analysis of clamped isotropic and cross-ply laminated plates via Unified Formulation”, Composite Structures, 328 (2024), 117736 | DOI