The non-classical optimality condition in the hybrid control problem of hyperbolic and ordinary differential equations with delay
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 2, pp. 255-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider an optimal control problem for a system of linear first-order hyperbolic equations in which the inhomogeneity in the right-hand side is determined from the controlled linear system of ordinary differential equations with constant delay. The coefficient matrix at phase variables in the system of ordinary differential equations depends on the control function. The cost functional is linear. On the basis of the exact increment formula (without remainder terms) of the cost functional, the problem is reduced to the optimal control problem of a system of ordinary differential equations. The result is formulated in the form of a non-classical variational optimality condition. The proposed problem reduction significantly reduces the amount of calculations when using numerical optimization methods. An illustrative example is given.
Keywords: hybrid problem, hyperbolic system, delayed system, variational optimality condition, problem reduction.
Mots-clés : exact increment formula
@article{VSPUI_2024_20_2_a9,
     author = {A. V. Arguchintsev and V. P. Poplevko},
     title = {The non-classical optimality condition in the hybrid control problem of hyperbolic and ordinary differential equations with delay},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {255--264},
     year = {2024},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a9/}
}
TY  - JOUR
AU  - A. V. Arguchintsev
AU  - V. P. Poplevko
TI  - The non-classical optimality condition in the hybrid control problem of hyperbolic and ordinary differential equations with delay
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 255
EP  - 264
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a9/
LA  - ru
ID  - VSPUI_2024_20_2_a9
ER  - 
%0 Journal Article
%A A. V. Arguchintsev
%A V. P. Poplevko
%T The non-classical optimality condition in the hybrid control problem of hyperbolic and ordinary differential equations with delay
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 255-264
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a9/
%G ru
%F VSPUI_2024_20_2_a9
A. V. Arguchintsev; V. P. Poplevko. The non-classical optimality condition in the hybrid control problem of hyperbolic and ordinary differential equations with delay. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 2, pp. 255-264. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a9/

[1] Teo K., “Optimal control of systems governed by time-delayed, second-order, linear, parabolic partial differential equations with a first boundary condition”, Journal of Optimization Theory and Applications, 29:3 (1979), 437–481 | DOI | MR | Zbl

[2] Sadek I., “Optimal control of time-delay systems with distributed parameter”, Journal of Optimization Theory and Applications, 67:3 (1990), 567–585 | DOI | MR | Zbl

[3] Mai T., Nguyen H., Nguyen V., Vu V., “Applying Pade approximation model in optimal control problem for a distributed parameter system with time delay”, International Journal of Computing and Optimization, 4:1 (2017), 19–30 | DOI

[4] Provotorov V. V., Provotorova E. N., “Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 209–224 (In Russian) | DOI | MR

[5] Liu D., Wang Q., Xu G., “Stabilization of distributed parameter systems with delays in the boundary based on predictors”, IEEE Transactions on Automatic Control, 66:7 (2021), 3317–3324 | DOI | MR | Zbl

[6] Grebenshchikov B. G., “Asymptotic properties and stabilization of a neutral type system with constant delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:1 (2021), 81–96 (In Russian) | DOI | MR

[7] Furtat I., Orlov Yy., “Synchronization and state estimation of nonlinear systems with unknown time-delays: Adaptive identification method”, Cybernetics and Physics, 9:3 (2020), 136–143 | DOI

[8] Alekseev V. V., Kryshev I. I., Sazykina T. G., Physical and mathematical modeling of ecosystems, Hydrometeoizdat Publ, St. Petersburg, 1992, 368 pp. (In Russian)

[9] Arguchintsev A. V., Optimal control of hyperbolic systems, Fizmatlit Publ, M., 2007, 186 pp. (In Russian)

[10] Rozhdestvenskiyi B. L., Yanenko N. N., Systems of quasilinear equations and their applications to gas dynamics, Nauka Publ, M., 1978, 592 pp. (In Russian) | MR

[11] Srochko V. A., Aksenyushkina E. V., “Parameterization of some linear systems control problems”, The Bulletin of Irkutsk State University. Series Mathematics, 30 (2019), 83–98 (In Russian) | DOI | MR | Zbl

[12] Arguchintsev A. V., “The variational optimality condition in the problem of minimizing the finite state norm by a composite system of hyperbolic and ordinary differential equations”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19:4 (2023), 540–548 (In Russian) | DOI | MR