Mots-clés : satellite
@article{VSPUI_2024_20_2_a8,
author = {A. Yu. Aleksandrov and S. B. Ruzin},
title = {Triaxial electrodynamic stabilization of a satellite via {PID} controller},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {244--254},
year = {2024},
volume = {20},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a8/}
}
TY - JOUR AU - A. Yu. Aleksandrov AU - S. B. Ruzin TI - Triaxial electrodynamic stabilization of a satellite via PID controller JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2024 SP - 244 EP - 254 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a8/ LA - en ID - VSPUI_2024_20_2_a8 ER -
%0 Journal Article %A A. Yu. Aleksandrov %A S. B. Ruzin %T Triaxial electrodynamic stabilization of a satellite via PID controller %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2024 %P 244-254 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a8/ %G en %F VSPUI_2024_20_2_a8
A. Yu. Aleksandrov; S. B. Ruzin. Triaxial electrodynamic stabilization of a satellite via PID controller. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 2, pp. 244-254. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a8/
[1] Schaub H., Junkins J. L., Analytical mechanics of space systems, American Institute of Aeronautics Astronautics, Reston, Virginia, 2009, 744 pp. | MR | Zbl
[2] Hughes P. C., Spacecraft attitude dynamics, Wiley, New York, 1986, 584 pp.
[3] Kane T. R., Likins P. W., Levinson D. A., Spacecraft dynamics, McGraw-Hill Book Co, New York, 1983, 454 pp.
[4] Zhou K., Huang H., Wang X., Sun L., Zhong R., “Magnetic attitude control for Earth-pointing satellites in the presence of gravity gradient”, Aerospace Science and Technology, 60 (2017), 115–123 | DOI
[5] Silani E., Lovera M., “Magnetic spacecraft attitude control: A survey and some new results”, Control Engeneering Practic, 13:3 (2005), 357–371 | DOI
[6] Ignatov A. I., Sazonov V. V., “Stabilization of the solar orientation mode of an artificial earth satellite by an electromagnetic control system”, Cosmic Research, 56:5 (2018), 388–399 | DOI
[7] Guelman M., Waller R., Shiryaev A., Psiaki M., “Design and testing of magnetic controllers for satellite stabilization”, Acta Astronautica, 56 (2005), 231–239 | DOI
[8] Xia X., Guo C., Xie G., “Investigation on magnetic-based attitude de-tumbling algorithm”, Aerospace Science and Technology, 84 (2019), 1106–1115 | DOI
[9] Giri D. K., Sinha M., Kumar K. D., “Fault-tolerant attitude control of magneto-Coulombic satellites”, Acta Astronautica, 116 (2015), 254–270 | DOI
[10] Kovalenko A. P., Magnetic control systems for spacecraft, Mashinostroenie Publ, M., 1975, 248 pp. (In Russian)
[11] Antipov K. A., Tikhonov A. A., “Parametric control in the problem of spacecraft stabilization in the geomagnetic field”, Automation Remote Control, 68:8 (2007), 1333–1345 | DOI | MR
[12] Aleksandrov A. Yu., Tikhonov A. A., “Electrodynamic stabilization of earth-orbiting satellites in equatorial orbits”, Cosmic Research, 50:4 (2012), 313–318 | DOI
[13] Zhao C., Guo L., “PID controller design for second order nonlinear uncertain systems”, Science China Information Science, 60:2 (2017), 022201 | DOI | MR
[14] Tkhai V. N., “Stabilization of oscillations of a controlled reversible mechanical system”, Automation Remote Control, 83:9 (2022), 1404–1416 | DOI | MR | Zbl
[15] Anan'evskii I. M., Kolmanovskii V. B., “On stabilization of some control systems with an after-effect”, Automation Remote Control, 1989, no. 9, 1174–1181 | MR | Zbl
[16] Formal'sky A. M., “On a modification of the PID controller”, Dynamics and Control, 7:3 (1997), 269–277 | DOI | MR | Zbl
[17] Zhao C., Guo L., “Towards a theoretical foundation of PID control for uncertain nonlinear systems”, Automatica, 142 (2022), 110360 | DOI | MR | Zbl
[18] Dong W., Zhao Y., Cong Y., “Reduced-order observer-based controller design for quasi-one-sided Lipschitz nonlinear systems with time-delay”, International Journal Robust and Nonlinear Control, 31:3 (2021), 817–831 | DOI | MR | Zbl
[19] Zhabko A. P., Provotorov V. V., Sergeev S. M., “Optimal control of the Navier — Stokes system with a space variable in a network-like domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19:4 (2023), 549–562 | DOI | MR
[20] Subbarao K., “Nonlinear PID-like controllers for rigid-body attitude stabilization”, The Journal of the Austronautical Sciences, 52:1–2 (2004), 61–74 | DOI | MR
[21] Moradi M., “Self-tuning PID controller to three-axis stabilization of a satellite with unknown parameters”, International Journal Non-Linear Mechanics, 49 (2013), 50–56 | DOI
[22] Li Y., Zhaowei S., Dong Y., “Time efficient robust PID plus controller for satellite attitude stabilization control considering angular velocity and control torque constraint”, Journal Aerospace Engeneering, 30:5 (2017), 04017030 | DOI
[23] Alexandrov A. Yu., Tikhonov A. A., “Electrodynamic control with distributed delay for AES stabilization in an equatorial orbit”, Cosmic Research, 60:5 (2022), 366–374 | DOI | MR
[24] Fridman E., Introduction to time-delay systems: Analysis and control, Birkhäuser, Basel, 2014, 362 pp. | MR
[25] Aleksandrov A. Yu., Kosov A. A., Chen Y., “Stability and stabilization of mechanical systems with switching”, Automation Remote Control, 72:6 (2011), 1143–1154 | DOI | MR | Zbl
[26] Efimov D., Aleksandrov A., “Analysis of robustness of homogeneous systems with time delays using Lyapunov — Krasovskii functionals”, International Journal Robust Nonlinear Control, 31 (2021), 3730–3746 | DOI | MR | Zbl
[27] Aleksandrov A., Efimov D., Fridman E., “Stability of homogeneous systems with distributed delay and time-varying perturbations”, Automatica, 153 (2023), 111058 | DOI | MR | Zbl
[28] Kalinina E. A., Kamachkin A. M., Stepenko N. A., Tamasyan G. Sh., “On the question of a constructive controllability criterion. Pt I. Cyclic invariant subspaces”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19:2 (2023), 283–299 (In Russian) | DOI | MR
[29] Aleksandrov A. Y., Aleksandrova E. B., Tikhonov A. A., “Stabilization of a programmed rotation mode for a satellite with electrodynamic attitude control system”, Advances in Space Research, 62:1 (2018), 142–151 | DOI