The choice of the data transmission method during the study of improving the reliability and ensuring safe operation of products
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 2, pp. 220-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this work is to choose the most optimal method of data transmission for conducting research on improving the reliability and ensuring safe operation of products obtained by 3D printing, operated at low temperatures. This is very important, since any error that occurs when transmitting the results of the study is fraught with further inaccuracies, and, subsequently, possibly human lives or environmental and economic disasters. The article describes the main methods of data transmission suitable for this case. Their advantages and disadvantages, possible problems when deploying networks in production or when scaling the experiment are analyzed in detail. Further, a comparison of each method is made by assigning estimates for the required groups of indicators. Based on the results of the comparison, conclusions were drawn about the best way to transfer data for this study, which may be useful in carrying out further work, as well as in similar studies in the future.
Mots-clés : data transmission
Keywords: 3D-printing, Wi-Fi, RFID, Bluetooth.
@article{VSPUI_2024_20_2_a6,
     author = {A. A. Baevskiy and M. S. Anosov and A. Y. Panov},
     title = {The choice of the data transmission method during the study of improving the reliability and ensuring safe operation of products},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {220--230},
     year = {2024},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a6/}
}
TY  - JOUR
AU  - A. A. Baevskiy
AU  - M. S. Anosov
AU  - A. Y. Panov
TI  - The choice of the data transmission method during the study of improving the reliability and ensuring safe operation of products
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 220
EP  - 230
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a6/
LA  - ru
ID  - VSPUI_2024_20_2_a6
ER  - 
%0 Journal Article
%A A. A. Baevskiy
%A M. S. Anosov
%A A. Y. Panov
%T The choice of the data transmission method during the study of improving the reliability and ensuring safe operation of products
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 220-230
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a6/
%G ru
%F VSPUI_2024_20_2_a6
A. A. Baevskiy; M. S. Anosov; A. Y. Panov. The choice of the data transmission method during the study of improving the reliability and ensuring safe operation of products. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 2, pp. 220-230. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a6/

[1] Kabaldin Yu. G., Anosov M. S., Shatagin D. A., Kolchin P. V., “Production of gold-resistant metals by nanomodification in printing by electric arc welding using quantum mechanical and neural network modeling”, Vestnik of Machine-building, 2022, no. 9, 75–80 (In Russian) | DOI

[2] Kabaldin Yu. G., Anosov M. S., Shatagin D. A., Kolchin P. V., Zhelonkin M. V., Ryabov D. A., “Failure of metals produced by additive arc surfacing: Neural network analysis”, Russian Engineering Research, 42:11 (2022), 1164–1169 | DOI

[3] Mannah M. A., Ginot N., Batard C., “Effect of the power cable on data transmission over a pulsewidth-modulated network”, IEEE Transactions on Industrial Electronics, 61:8 (2014), 4238–4245 | DOI

[4] Wu H., Jiao C., Cui X., “Study on coupling of very fast transients to secondary cable via a test platform”, IEEE Transactions on Electromagnetic Compatibility, 60:5 (2018), 1366–1375 | DOI

[5] Faustov I. S., Tokarev A. B., Sladkih V. A., Koz'min V. A., Kryzhko I. B., “Radio monitoring of Bluetooth signals service parameters”, Systems of Control, Communication and Security, 2021, no. 3, 135–151 (In Russian) | DOI

[6] Sakkopoulos E., Ioannou Z.-M., Viennas E., “Personalized data minimization assurance using Bluetooth low energy”, Advanced Sciences and Technologies for Security Applications, 2020, 41–58 | DOI

[7] Hasan M. M., Faruque M. R. I., Islam M. T., “Dual band metamaterial antenna for LTE/ Bluetooth/WiMAX system”, Scientific Reports, 2018, no. 8, 1240 | DOI

[8] Qazi R., Parker K. E., Kim C. Y., Rill R., Norris M. R., Chung J., Bilbily J., Kim J. R., Walicki M. C., Gereau G. B., Lim H., Xiong Y., Lee J. R., Tapia M. A., Kravitz A. V., Will M. J., Ha S., McCall J. G., Jeong J.-W., “Scalable and modular wireless-network infrastructure for large-scale behavioural neuroscience”, Nature Biomedical Engineering, 2022, no. 6, 771–786 | DOI

[9] Huang Z., Hao Y., Li Y., “Three-dimensional integrated stretchable electronics”, Nature Electronics, 2018, no. 1, 473–480 | DOI

[10] Albazrqaoe W., Huang J., Xing G., “A practical Bluetooth traffic sniffing system: design, implementation, and countermeasure”, IEEE/ACM Transactions on Networking, 27:1 (2019), 71–84 | DOI

[11] Sushko A. D., Funtov D. A., Matyushov D. A., Al'-Hanani M. A., Rodygina I. V., “Comparative analysis of modern data transmission technologies”, Operation of Marine Transport, 2019, no. 2(91), 114–119 (In Russian) | DOI

[12] Mizaev M. M., Nazaeva M. I., Murzaev H. A., “How does Wi-Fi work”, Issues of Sustainable Development of Society, 2020, no. 7, 229–233 (In Russian) | DOI

[13] Koelemeij J. C. J., Dun H., Diouf C. E. V., “A hybrid optical-wireless network for decimetre-level terrestrial positioning”, Nature, 2022, no. 611, 473–478 | DOI

[14] Jiang Z., “Eliminating the barriers: demystifying Wi-Fi baseband design and introducing the picoscenes Wi-Fi sensing platform”, IEEE Internet of Things Journal, 9:6 (2022), 4476–4496 | DOI

[15] Wang W., Chen Y., Wang L., Zhang Q., “Sampleless Wi-Fi: Bringing low power to Wi-Fi communications”, IEEE/ACM Transactions on Networking, 25:3 (2017), 1663–1672 | DOI

[16] Zhang J., Lyu Y., Patton J., Periaswamy S. C. G., Roppel T., “BFVP: A probabilistic UHF RFID tag localization algorithm using bayesian filter and a variable power RFID model”, IEEE Transactions on Industrial Electronics, 65:10 (2018), 8250–8259 | DOI

[17] Khadka G., Arefin M. S., Karmakar N. C., “Using punctured convolution coding (PCC) for error correction in chipless RFID tag measurement”, IEEE Microwave and Wireless Components Letters, 30:7 (2020), 701–704 | DOI

[18] Barbot N., Rance O., Perret E., Classical RFID versus chipless RFID read range: Is linearity a friend or a foe?, IEEE Transactions on Microwave Theory and Techniques, 69:9 (2021), 4199–4208 | DOI

[19] Dobrykh D., Yusupov I., Ginzburg P., “Self-aligning roly-poly RFID-tag.”, Scientific Reports, 2022, no. 12, 2140 | DOI

[20] Zhu W., Cao J., Xu Y., Yang L., Kong J., “Fault-tolerant RFID-reader localization based on passive RFID-tags”, IEEE Transactions on Parallel and Distributed Systems, 25:8 (2014), 2065–2076 | DOI