Mots-clés : ensemble models
@article{VSPUI_2024_20_2_a5,
author = {D. Qi and V. M. Bure},
title = {Explanatory comparative analysis of time series forecasting algorithms for air quality prediction},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {206--219},
year = {2024},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a5/}
}
TY - JOUR AU - D. Qi AU - V. M. Bure TI - Explanatory comparative analysis of time series forecasting algorithms for air quality prediction JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2024 SP - 206 EP - 219 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a5/ LA - ru ID - VSPUI_2024_20_2_a5 ER -
%0 Journal Article %A D. Qi %A V. M. Bure %T Explanatory comparative analysis of time series forecasting algorithms for air quality prediction %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2024 %P 206-219 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a5/ %G ru %F VSPUI_2024_20_2_a5
D. Qi; V. M. Bure. Explanatory comparative analysis of time series forecasting algorithms for air quality prediction. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 2, pp. 206-219. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a5/
[1] Zhan D., Kwan Mei-Po, Zhang W., Yu X., Meng B., Liu Q., “The driving factors of air quality index in China”, Journal of Cleaner Production, 197 (2018), 1342–1351 | DOI
[2] Saad M. Sh., Melvin A., Md Sh., Yeon A., Saad M., Rahman A., Kamarudin Yu. M., “Classifying sources influencing indoor air quality (IAQ) using artificial neural network (ANN)”, Sensors, 15:5 (2015), 11665–11684 | DOI
[3] Navares R., Aznarte J. L., “Predicting air quality with deep learning LSTM: Towards comprehensive models”, Ecological Informatics, 55 (2020), 101019 | DOI
[4] Athira V., Geetha P., Vinayakumar R., Soman K. P., “Deepairnet: Applying recurrent networks for air quality prediction”, Procedia Computer Science, 132 (2018), 1394–1403 | DOI
[5] Di Q., Amini H., Shi L., Kloog I., “An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution”, Environment International, 130:0160–4120 (2019) | DOI
[6] Fann N., Risley D., “The public health context for PM2.5 and ozone air quality trends”, Air Qual Atmos Health, 6 (2013), 1–111 | DOI
[7] Wang K., Yin H., Chen Y., “The effect of environmental regulation on air quality: A study of new ambient air quality standards in China”, Journal of Cleaner Production, 215 (2019), 268–279 | DOI
[8] Palani S., Liong Shie-Yui, Tkalich P., “An ANN application for water quality forecasting”, Marine Pollution Bulletin, 56:9 (2008), 1586–1597 | DOI
[9] Sherstinsky A., “Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network”, Physica D: Nonlinear Phenomena, 404:016 (2020), 132306 | DOI | MR | Zbl
[10] Dey R. S., Fathi M., “Gate-variants of Gated Recurrent Unit (GRU) neural networks”, 2017 IEEE 60$^{th}$ International Midwest Symposium on Circuits and Systems (MWSCAS), 2017, 1597–1600 | DOI
[11] Chen T., Guestrin C., “Xgboost: A scalable tree boosting system”, Proceedings of the 22$^{\rm nd}$ International Conference on knowledge discovery and data mining, 2016, 785–794
[12] Essam Al. D., “Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset”, International Journal of Computer and Information Engineering, 13:1 (2019), 6–10 | MR
[13] Meng Y., Yang N., Qian Z., Zhang G., “What makes an online review more helpful: an interpretation framework using XGBoost and SHAP values”, Journal of Theoretical and Applied Electronic Commerce Research, 16:3 (2020), 466–490 | DOI
[14] Merrick L., “The explanation game: Explaining machine learning models using shapley values”, Machine Learning and Knowledge Extraction, 4$^{\rm th}$ IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference. CD-MAKE (Dublin, Ireland, August 25–28, 2020), v. 4, 2020, 17–38 | DOI
[15] Iakushev V. P., Bure V. M., Mitrofanova O. A., Mitrofanov E. P., “Theoretical foundations of probabilistic and statistical forecasting of agrometeorological risks”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:2 (2021), 174–182 (In Russian) | DOI | MR
[16] Egorov N. V., Vinogradova E. M., Doronin G. G., “Blade-like field cathode with a dielectric coating mathematical modeling”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19:1 (2023), 65–71 (In Russian) | DOI | MR