Dynamic decision-making under uncertainty: Bayesian learning in environmental game theory
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 2, pp. 289-297

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates the issue of pollution control dynamic games defined over a finite time horizon, with a particular focus on parameter uncertainty within the ecosystem. We employ a dynamic Bayesian learning method to estimate uncertain parameters in the dynamic equation, differing from traditional single-instance Bayesian learning which does not involve continuous signal reception and belief updating. Our study validates the effectiveness of the dynamic Bayesian learning approach, demonstrating that, over time, the beliefs of the players progressively converge towards the true values of the unknown parameters. Through numerical simulations, we illustrate the convergence process of beliefs and compare optimal control strategies under different scenarios. The findings of this paper offer a new perspective for understanding and addressing the uncertainties in pollution control problems.
Keywords: dynamic Bayesian learning, pollution control games, ecological uncertainty, optimal control strategy.
@article{VSPUI_2024_20_2_a12,
     author = {J. Zhou and O. L. Petrosyan and H. Gao},
     title = {Dynamic decision-making under uncertainty: {Bayesian} learning in environmental game theory},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {289--297},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a12/}
}
TY  - JOUR
AU  - J. Zhou
AU  - O. L. Petrosyan
AU  - H. Gao
TI  - Dynamic decision-making under uncertainty: Bayesian learning in environmental game theory
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 289
EP  - 297
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a12/
LA  - en
ID  - VSPUI_2024_20_2_a12
ER  - 
%0 Journal Article
%A J. Zhou
%A O. L. Petrosyan
%A H. Gao
%T Dynamic decision-making under uncertainty: Bayesian learning in environmental game theory
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 289-297
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a12/
%G en
%F VSPUI_2024_20_2_a12
J. Zhou; O. L. Petrosyan; H. Gao. Dynamic decision-making under uncertainty: Bayesian learning in environmental game theory. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 2, pp. 289-297. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a12/