Differential game with a “life line” under the Grönwall constraint on controls
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 2, pp. 265-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the pursuit-evasion and “life line” differential games of one pursuer and one evader, whose controls are subjected to constraints given by Grönwall type inequalities. It is said that an evader has been captured by a pursuer if the state of the pursuer coincides with the state of the evader. One of the main aims of this work is to formulate optimal strategies of players and define guaranteed capture time. Here a strategy of parallel convergence (briefly, $\Pi$-strategy) for the pursuer is suggested and proved that it is optimal for pursuit. To solve the “life line” problem we will investigate dynamics of the attainability domain of players by Petrosyan method, that is for the attainability domain, conditions of embedding in respect to time are given. This work grows and maintains the works of Isaacs, Petrosyan, Pshenichnyi, Azamov and other researchers.
Keywords: differential game, pursuer, evader, Grönwall constraint, strategy, parallel pursuit, attainability domain, “life line” game, the Apollonius sphere.
@article{VSPUI_2024_20_2_a10,
     author = {B. T. Samatov and A. Kh. Akbarov},
     title = {Differential game with a {\textquotedblleft}life line{\textquotedblright} under the {Gr\"onwall} constraint on controls},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {265--280},
     year = {2024},
     volume = {20},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a10/}
}
TY  - JOUR
AU  - B. T. Samatov
AU  - A. Kh. Akbarov
TI  - Differential game with a “life line” under the Grönwall constraint on controls
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 265
EP  - 280
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a10/
LA  - en
ID  - VSPUI_2024_20_2_a10
ER  - 
%0 Journal Article
%A B. T. Samatov
%A A. Kh. Akbarov
%T Differential game with a “life line” under the Grönwall constraint on controls
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 265-280
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a10/
%G en
%F VSPUI_2024_20_2_a10
B. T. Samatov; A. Kh. Akbarov. Differential game with a “life line” under the Grönwall constraint on controls. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 2, pp. 265-280. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_2_a10/

[1] Pontryagin L. S., Selected works, MAKS Press, M., 2004, 551 pp. (In Russian) | MR | Zbl

[2] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 2011, 517 pp. | MR

[3] Isaacs R., Differential games, John Wiley and Sons, New York, 1965, 385 pp. | Zbl

[4] Petrosyan L. A., Differential games of pursuit, Series on optimization, World Scientific Publ., Singapore, 1993, 326 pp. | MR | Zbl

[5] Pshenichnyi B. N., “Simple pursuit by several objects”, Cybernetics and System Analysis, 12:5 (1976), 484–485 | MR

[6] Pshenichnyi B. N., Chikrii A. A., Rappoport J. S., “An effective method for solving differential games with many pursuers”, Dokl. Akad. Nauk SSSR, 256:3 (1981), 530–535 (In Russian) | MR | Zbl

[7] Azamov A., “On the quality problem for simple pursuit games with constraint”, Serdica Bulgariacae Math., 12:1 (1986), 38–43 (In Russian) | MR | Zbl

[8] Azamov A. A., Samatov B. T., “The $\Pi$-strategy: Analogies and applications”, The Fourth International Conference Game Theory and Management (St. Petersburg), v. 4, 2010, 33–47 | MR

[9] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University Press, Izhevsk, 2009, 266 pp. (In Russian) | MR | Zbl

[10] Chikrii A. A., Conflict-controlled processes, Kluwer, Dordrecht, 1997, 403 pp. | MR | Zbl

[11] Grigorenko N. L., Mathematical methods of control for several dynamic processes, Moscow University Press, M., 1990, 198 pp. (In Russian)

[12] Petrosyan L. A., “About some of the family differential games at a survival in the space $\mathbb{R}^n$”, Papers of Academy sciences of USSR, 161:1 (1965), 52–54 (In Russian) | MR | Zbl

[13] Petrosyan L. A., “Pursuit games with “a survival zone””, Vestnik of Leningrad State University, 3:13 (1967), 76–85 (In Russian) | MR | Zbl

[14] Petrosyan L. A., Dutkevich V. G., “Games with “a survival zone”, occation $l$-catch”, Vestnik of Leningrad State University, 3:13 (1969), 31–38 (In Russian) | Zbl

[15] Petrosyan L. A., Rikhsiev B. B., Pursuit on the plane, Nauka Publ, M., 1991, 96 pp. (In Russian) | Zbl

[16] Petrosyan L. A., Mazalov V. V., Game theory and applications, v. II, Nova Sci. Publ, New York, 1996, 219 pp. | MR

[17] Samatov B. T., “On a Pursuit-Evasion problem under a linear change of the pursuer resource”, Siberian Advances in Mathematics, 23:10 (2013), 294–302 | DOI | MR

[18] Samatov B. T., “The pursuit-evasion problem under integral-geometric constraints on pursuer controls”, Automation and Remote Control, 74:7 (2013), 1072–1081 | DOI | MR | Zbl

[19] Samatov B. T., “Problems of group pursuit with integral constraints on controls of the players. I”, Cybernetics and Systems Analysis, 49:5 (2013), 756–767 | DOI | MR | Zbl

[20] Samatov B. T., “Problems of group pursuit with integral constraints on controls of the players. II”, Cybernetics and Systems Analysis, 49:6 (2013), 907–921 | DOI | MR | Zbl

[21] Samatov B. T., “The $\Pi$-strategy in a differential game with linear control constraints”, Journal of Applied Mathematics and Mechanics, 78:3 (2014), 258–263 | DOI | MR | Zbl

[22] Dar'in A. N., Kurzhanskii A. B., “Control under indeterminacy and double constraints”, Differential Equations, 39:11 (2003), 1554–1567 | DOI | MR | Zbl

[23] Kornev D. V., Lukoyanov N. Yu., “On a minimax control problem for a positional functional under geometric and integral constraints on control actions”, Proceedings of the Steklov Institute of Mathematics, 293 (2016), 85–100 | DOI | MR

[24] Satimov N. Yu., Methods of solving of pursuit problem in differential games, National University of Uzbekistan Press, Tashkent, 2003, 240 pp. (In Russian)

[25] Ibragimov G. I., “A game of optimal pursuit of one object by several”, Journal of Applied Mathematics and Mechanics, 62:2 (1998), 187–192 | DOI | MR

[26] Ibragimov G. I., “Optimal pursuit with countably many pursuers and one evader”, Differential Equations, 41:5 (2005), 627–635 | DOI | MR | Zbl

[27] Aubin J. P., Cellina A., Differential inclusions. Set-valued maps and viability theory, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1984, xiii+342 pp. | MR | Zbl

[28] Pang J. S., Stewart D. E., “Differential variational inequalities”, Mathematical Programming. Series A, 113:2 (2008), 345–424 | DOI | MR | Zbl

[29] Samatov B. T., Ibragimov G. I., Hodjibayeva I. V., “Pursuit-Evasion differential games with the Grönwall type constraints on controls”, Ural Mathematical Journal, 6:2 (2020), 95–107 | DOI | MR | Zbl

[30] Samatov B. T., Akbarov A. Kh., Zhuraev B. I., “Pursuit-Evasion differential games with $\text{Gr}$-constraints on controls”, Processing of Institute for Mathematics and Informatics of Udmurt State University, 59 (2022), 67–84 | MR | Zbl

[31] Grönwall T. H., “Note on the derivatives with respect to a parameter of the solutions of a system of differential equations”, Annals of Mathematics Second Series, 20:4 (1919), 292–296 | DOI | MR

[32] Blagodatskikh V. I., Introduction to optimal control, Vysshaya shkola Publ, M., 2001, 239 pp. (In Russian)